On the range of some elementary operators
Hamza El Mouadine; Abdelkhalek Faouzi; Youssef Bouhafsi
Commentationes Mathematicae Universitatis Carolinae (2024)
- Issue: 1, page 53-62
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEl Mouadine, Hamza, Faouzi, Abdelkhalek, and Bouhafsi, Youssef. "On the range of some elementary operators." Commentationes Mathematicae Universitatis Carolinae (2024): 53-62. <http://eudml.org/doc/299949>.
@article{ElMouadine2024,
abstract = {Let $L(H)$ denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space $H$. For $A,B\in L(H)$, the generalized derivation $\delta _\{A,B\}$ and the multiplication operator $M_\{A,B\}$ are defined on $L(H)$ by $\delta _\{A,B\}(X)=AX-XB$ and $M_\{A,B\}(X)=AXB$. In this paper, we give a characterization of bounded operators $A$ and $B$ such that the range of $M_\{A,B\}$ is closed. We present some sufficient conditions for $\delta _\{A,B\}$ to have closed range. Some related results are also given.},
author = {El Mouadine, Hamza, Faouzi, Abdelkhalek, Bouhafsi, Youssef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {generalized derivation; elementary operator; generalized inverse; Kato spectrum},
language = {eng},
number = {1},
pages = {53-62},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the range of some elementary operators},
url = {http://eudml.org/doc/299949},
year = {2024},
}
TY - JOUR
AU - El Mouadine, Hamza
AU - Faouzi, Abdelkhalek
AU - Bouhafsi, Youssef
TI - On the range of some elementary operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 53
EP - 62
AB - Let $L(H)$ denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space $H$. For $A,B\in L(H)$, the generalized derivation $\delta _{A,B}$ and the multiplication operator $M_{A,B}$ are defined on $L(H)$ by $\delta _{A,B}(X)=AX-XB$ and $M_{A,B}(X)=AXB$. In this paper, we give a characterization of bounded operators $A$ and $B$ such that the range of $M_{A,B}$ is closed. We present some sufficient conditions for $\delta _{A,B}$ to have closed range. Some related results are also given.
LA - eng
KW - generalized derivation; elementary operator; generalized inverse; Kato spectrum
UR - http://eudml.org/doc/299949
ER -
References
top- Anderson J. H., Foiaş C., 10.2140/pjm.1975.61.313, Pacific J. Math. 61 (1975), no. 2, 313–325. MR0412889DOI10.2140/pjm.1975.61.313
- Apostol C., Inner derivations with closed range, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 3, 249–265. MR0410459
- Apostol C., Stampfli J., On derivation ranges, Indiana Univ. Math. J. 25 (1976), no. 9, 857–869. MR0412890
- Badea C., Mbekhta M., 10.1090/S0002-9947-99-02365-X, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2949–2960. MR1621709DOI10.1090/S0002-9947-99-02365-X
- Caradus S. R., Generalized Inverses and Operator Theory, Queen's Papers in Pure and Applied Mathematics, 50, Queen's University, Kingston, 1978. Zbl0434.47003MR0523736
- Davis C., Rosenthal P., 10.4153/CJM-1974-132-6, Canadian J. Math. 26 (1974), 1384–1389. MR0355649DOI10.4153/CJM-1974-132-6
- Fialkow L. A., Structural properties of elementary operators, in Elementary Operators and Applications, Blaubeuren, 1991, World Sci. Publ., River Edge, 1992, pages 55–113. MR1183937
- Fialkow L. A., Herrero D. A., 10.1512/iumj.1984.33.33010, Indiana Univ. Math. J. 33 (1984), no. 2, 185–211. MR0733896DOI10.1512/iumj.1984.33.33010
- Laursen K. B., Neumann M. M., An Introduction to Local Spectral Theory, London Mathematical Society Monographs, New Series, 20, The Clarendon Press, Oxford University Press, New York, 2000. MR1747914
- Mbekhta M., Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), no. 1, 69–105 (French). MR1002122
- Rosenblum M., 10.1215/S0012-7094-56-02324-9, Duke Math. J. 23 (1956), 263–269. MR0079235DOI10.1215/S0012-7094-56-02324-9
- Stampfli J. G., 10.1090/S0002-9939-1975-0377575-X, Proc. Amer. Math. Soc. 52 (1975), 117–120. MR0377575DOI10.1090/S0002-9939-1975-0377575-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.