Stabilizability of multi-agent systems over finite fields via fully actuated system approaches

Yunsi Yang; Jun-e Feng; Lei Jia

Kybernetika (2025)

  • Issue: 2, page 264-287
  • ISSN: 0023-5954

Abstract

top
The problem of stabilizability of high-order fully actuated (HOFA) multi-agent systems over finite fields is considered in this paper. The necessary and sufficient conditions for the stabilizability of HOFA multi-agent systems are presented, which indicates the stabilizability is closely related to the interaction topology among agents. Using the full-actuation property of HOFA models, a stabilization control protocol with neighbor interaction is given for HOFA multi-agent systems. Additionally, when the multi-agent system is stabilizable, the time for the system to reach a stable state can be determined through the control protocol. Finally, the results are employed to solve the formation control problem, and some sufficient and/or necessary conditions are proposed. Numerical examples are presented to demonstrate the effectiveness of the proposed results.

How to cite

top

Yang, Yunsi, Feng, Jun-e, and Jia, Lei. "Stabilizability of multi-agent systems over finite fields via fully actuated system approaches." Kybernetika (2025): 264-287. <http://eudml.org/doc/299980>.

@article{Yang2025,
abstract = {The problem of stabilizability of high-order fully actuated (HOFA) multi-agent systems over finite fields is considered in this paper. The necessary and sufficient conditions for the stabilizability of HOFA multi-agent systems are presented, which indicates the stabilizability is closely related to the interaction topology among agents. Using the full-actuation property of HOFA models, a stabilization control protocol with neighbor interaction is given for HOFA multi-agent systems. Additionally, when the multi-agent system is stabilizable, the time for the system to reach a stable state can be determined through the control protocol. Finally, the results are employed to solve the formation control problem, and some sufficient and/or necessary conditions are proposed. Numerical examples are presented to demonstrate the effectiveness of the proposed results.},
author = {Yang, Yunsi, Feng, Jun-e, Jia, Lei},
journal = {Kybernetika},
keywords = {finite fields; fully actuated system approach; stabilizability; multi-agent systems},
language = {eng},
number = {2},
pages = {264-287},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stabilizability of multi-agent systems over finite fields via fully actuated system approaches},
url = {http://eudml.org/doc/299980},
year = {2025},
}

TY - JOUR
AU - Yang, Yunsi
AU - Feng, Jun-e
AU - Jia, Lei
TI - Stabilizability of multi-agent systems over finite fields via fully actuated system approaches
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 264
EP - 287
AB - The problem of stabilizability of high-order fully actuated (HOFA) multi-agent systems over finite fields is considered in this paper. The necessary and sufficient conditions for the stabilizability of HOFA multi-agent systems are presented, which indicates the stabilizability is closely related to the interaction topology among agents. Using the full-actuation property of HOFA models, a stabilization control protocol with neighbor interaction is given for HOFA multi-agent systems. Additionally, when the multi-agent system is stabilizable, the time for the system to reach a stable state can be determined through the control protocol. Finally, the results are employed to solve the formation control problem, and some sufficient and/or necessary conditions are proposed. Numerical examples are presented to demonstrate the effectiveness of the proposed results.
LA - eng
KW - finite fields; fully actuated system approach; stabilizability; multi-agent systems
UR - http://eudml.org/doc/299980
ER -

References

top
  1. Arel, I., Liu, C., Urbanik, T., Kohls, A. G., , IET Intell. Transp. Syst. 4 (2010), 128-135. DOI
  2. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C., , IEEE Trans. Robot. Automat. 18, (2002), 5, 813-825. DOI
  3. Ding, W., Yan, G., Lin, Z., , Automatica 46 (2010), 1, 174-181. MR2578288DOI
  4. Duan, G., , IEEE Trans. Cybernet. 54 (2024), 12, 7285-7306. MR4358068DOI
  5. Duan, G., , Acta Automat. Sin. 46 (2020), 7, 1333-1345. DOI
  6. Duan, G., , Acta Automat. Sinica 46 (2020), 8, 1571-1581. DOI
  7. Duan, G., , Int. J. Syst. Sci. 52 (2021), 2, 422-435. MR4213568DOI
  8. Duan, G., , Int. J. Syst. Sci. 52 (2021), 3, 437-454. MR4216261DOI
  9. Duan, G., , Int. J. Syst. Sci. 52 (2021), 14, 3091-3114. MR4323456DOI
  10. Duan, G., , Int. J. Syst. Sci. 53 (2021), 4, 810-832. MR4385671DOI
  11. Fax, J. A., Optimal and Cooperative Control of Vehicle Formations., Ph.D. Thesis, California Institute of Technology, Pasaden 2002. 
  12. Fax, J. A., Murray, R. M., , IEEE Trans. Automat. Control 49 (2004), 9, 1465-1476. MR2086912DOI
  13. Franceschelli, M., Gasparri, A., Giua, A., Ulivi, G., , In: Proc. 2010 IEEE Int. Conf. Robot. Autom., 2010, pp. 3556-3561. DOI
  14. Guan, Y., Ji, Z., Zhang, L., Wang, L., , Syst. Control Lett. 62 (2013), 5, 438-446. MR3044456DOI
  15. Guan, Y., Kong, X., , Int. J. Syst. Sci 50, (2019), 2, 294-306. MR3902207DOI
  16. Jadbabaie, A., Lin, J., Morse, A. S., , IEEE Trans. Automat. Control 48 (2003), 6, 988-1001. MR1986266DOI
  17. Ji, Z., Wang, Z., Lin, H., , Int. J. Control 83 (2010), 2, 371-386. MR2606189DOI
  18. Kalman, R. E., Contribution to the theory of optimal control., Bol. Soc. Mat. Mexicana 5 (1960), 2, 102-119. MR0127472
  19. Kalman, R. E., Controllability of linear dynamical systems., Theory Differ. Equat. 1 (1963), 3, 189-213. MR0155070
  20. Kim, H., Shim, H., Back, J., Seo, J., , In: Proc. 50th IEEE Conf. Decis. Control Euro. Control Conf., 2011, pp. 4829-4834. DOI
  21. Li, X., Chen, M., Su, H., Li, C., , Automatica 68 (2016), 39-43. MR3483666DOI
  22. Li, Y., Li, H., Ding, X., Zhao, G., , IEEE Trans. Cybernet. 49 (2018), 8, 3203-3208. DOI
  23. Li, Y., Li, H., , In: Proc. 38th Chin. Control Conf., 2019, pp. 5606-5611. DOI
  24. Li, X., Su, H., Chen, M., , Int. J. Control 89 (2016), 5, 1000-1008. MR3460585DOI
  25. Ligtenberg, A., Wachowicz, M., Bregt, A. K., A.Beulensb, Kettenis, D. L., , J. Environ. Management 72 (2004), 1, 43-55. DOI
  26. Liu, G., , IEEE/CAA J. Autom. Sinica 9 (2022), 4, 615-623. DOI
  27. Logenthiran, T., Srinivasan, D., Khambadkone, A. M., , Electr. Power Syst. Res. 81 (2011), 1, 138-148. DOI
  28. Lu, Z., Zhang, L., Wang, L., , In: Proc. 35th Chin. Control Conf., 2016, pp. 8230-8235. DOI
  29. Lu, Z., Zhang, L., Wang, L., , Sci. China Inform. Sci. 62 (2019), 12, 12201. MR3844621DOI
  30. Lynch, N., Distributed Algorithms., Elsevier, San Francisco 1996. MR1388778
  31. Meng, M., Li, X., Xiao, G., , Automatica 115 (2020), 108877. MR4062526DOI
  32. Mullen, G., Panario, D., , Chapman and Hall/CRC, Boca Raton 2013. DOI
  33. Olfati-Saber, R., Murray, R. M., , IEEE Trans. Automat. Control 49 (2004), 9, 1520-1533. MR2086916DOI
  34. Pasqualetti, F., Borra, D., Bullo, F., , Automatica 50 (2014), 2, 349-358. MR3163782DOI
  35. Reger, J., , Automatisierungstechnik 53 (2005), 1, 45. DOI
  36. Ren, H., Cheng, Z., Qin, J., Lu, R., , Automatica 154 (2023), 111100. MR4597370DOI
  37. Ren, H., Liu, R., Cheng, Z., Ma, H., Li, H., , IEEE Trans. Circuits Syst. II: Express Br. 71 (2023), 2, 712-716. DOI
  38. Shreyas, S., Christoforos, H., , IEEE Trans. Automat. Control 58 (2013), 1, 60-73. MR3006707DOI
  39. Su, H., Chen, M., Lam, J., Lin, Z., , IEEE Trans. Circuits Syst. I: Regul. Pap. 60 (2013), 7, 1881-1889. MR3072458DOI
  40. Sun, Y., Ji, Z., Liu, Y., Lin, C., , Automatica 144 (2022), 110491. MR4453069DOI
  41. Tay, T., Mareels, I., Moore, J., , Springer Science Business Media, New York 1998. MR1471704DOI
  42. Tanner, H. G., , In: Proc. 43rd IEEE Conf. Decis. Control 3 (2005), pp. 2467-2472. DOI
  43. Toledo, R. A. H., , Commun. Algebra 33 (2005), 9, 2977-2989. MR2175374DOI
  44. Xiang, L., Zhu, J., Chen, F., Chen, G., , Math. Probl. Engrg. (2013). MR3062855DOI
  45. Xu, X., Hong, Y., , In: Proc. 53rd IEEE Conf. Decis. Control, 2014, pp. 2999-3004. DOI
  46. Yang, Y., Feng, J., Jia, L., , Math. Model. Control 3 (2023), 3, 244-255. DOI
  47. Yang, Y., Feng, J., Jia, L., , Int. J. Syst. Sci. 55 (2024), 12, 2478-2493. MR4781809DOI
  48. Zhang, D., Liu, G., Cao, L., , IEEE/ASME Trans. Mechatronics 27 (2022), 6, 4362-4372. DOI
  49. Zhang, D., Liu, G., Cao, L., , IEEE Trans. Syst. Man Cybern.: Syst. 53 (2022), 2, 801-812. DOI
  50. Zhang, D., Liu, G., Cao, L., , IEEE/ASME Trans. Mechatron. 28 (2023), 3, 1570-1581. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.