H analysis of cooperative multi-agent systems by adaptive interpolation

Zoran Tomljanović

Applications of Mathematics (2025)

  • Issue: 3, page 367-386
  • ISSN: 0862-7940

Abstract

top
We consider a projection-based model reduction approach to computing the maximal impact, one agent or a group of agents has on the cooperative system. As a criterion for measuring the agent-team impact on multi-agent systems, we use the H norm, and output synchronization is taken as the underlying cooperative control scheme. We investigate a projection-based model reduction approach that allows efficient H norm calculation. The convergence of this approach depends on initial interpolation points, so we present approaches to their determination. Since the analysis of multi-agent systems is important from different perspectives, several comparisons are presented in the section on numerical experiments. A graph Laplacian matrix of an inter-agent interaction graph is a foundational element in modeling and analyzing multi-agent systems. We consider various graph topology matrices, system parameters, and excitations of different agents. Different strategies for selecting initial interpolation points are also compared with baseline approaches for calculating the H norm.

How to cite

top

Tomljanović, Zoran. "$H_{\infty }$ analysis of cooperative multi-agent systems by adaptive interpolation." Applications of Mathematics (2025): 367-386. <http://eudml.org/doc/299989>.

@article{Tomljanović2025,
abstract = {We consider a projection-based model reduction approach to computing the maximal impact, one agent or a group of agents has on the cooperative system. As a criterion for measuring the agent-team impact on multi-agent systems, we use the $H_\{\infty \}$ norm, and output synchronization is taken as the underlying cooperative control scheme. We investigate a projection-based model reduction approach that allows efficient $H_\{\infty \}$ norm calculation. The convergence of this approach depends on initial interpolation points, so we present approaches to their determination. Since the analysis of multi-agent systems is important from different perspectives, several comparisons are presented in the section on numerical experiments. A graph Laplacian matrix of an inter-agent interaction graph is a foundational element in modeling and analyzing multi-agent systems. We consider various graph topology matrices, system parameters, and excitations of different agents. Different strategies for selecting initial interpolation points are also compared with baseline approaches for calculating the $H_\{\infty \}$ norm.},
author = {Tomljanović, Zoran},
journal = {Applications of Mathematics},
keywords = {multi-agent system; $H_\{\infty \}$ norm; network robustness; adaptive interpolation},
language = {eng},
number = {3},
pages = {367-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$H_\{\infty \}$ analysis of cooperative multi-agent systems by adaptive interpolation},
url = {http://eudml.org/doc/299989},
year = {2025},
}

TY - JOUR
AU - Tomljanović, Zoran
TI - $H_{\infty }$ analysis of cooperative multi-agent systems by adaptive interpolation
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 3
SP - 367
EP - 386
AB - We consider a projection-based model reduction approach to computing the maximal impact, one agent or a group of agents has on the cooperative system. As a criterion for measuring the agent-team impact on multi-agent systems, we use the $H_{\infty }$ norm, and output synchronization is taken as the underlying cooperative control scheme. We investigate a projection-based model reduction approach that allows efficient $H_{\infty }$ norm calculation. The convergence of this approach depends on initial interpolation points, so we present approaches to their determination. Since the analysis of multi-agent systems is important from different perspectives, several comparisons are presented in the section on numerical experiments. A graph Laplacian matrix of an inter-agent interaction graph is a foundational element in modeling and analyzing multi-agent systems. We consider various graph topology matrices, system parameters, and excitations of different agents. Different strategies for selecting initial interpolation points are also compared with baseline approaches for calculating the $H_{\infty }$ norm.
LA - eng
KW - multi-agent system; $H_{\infty }$ norm; network robustness; adaptive interpolation
UR - http://eudml.org/doc/299989
ER -

References

top
  1. Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M., 10.1002/pamm.201710343, PAMM, Proc. Appl. Math. Mech. 17 (2017), 751-752. (2017) DOI10.1002/pamm.201710343
  2. Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M., 10.1137/16M1086200, SIAM J. Matrix Anal. Appl. 38 (2017), 1496-1516. (2017) Zbl1379.65020MR3735291DOI10.1137/16M1086200
  3. Antoulas, A. C., 10.1137/1.9780898718713, Advances in Design and Control 6. SIAM, Philadelphia (2005). (2005) Zbl1112.93002MR2155615DOI10.1137/1.9780898718713
  4. Antoulas, A. C., Beattie, C. A., Gugercin, S., 10.1007/978-1-4419-5757-3_1, Efficient Modeling and Control of Large-Scale Systems Springer, New York (2010), 3-58. (2010) Zbl1229.65103MR0593759DOI10.1007/978-1-4419-5757-3_1
  5. Antoulas, A. C., Beattie, C. A., Güğercin, S., 10.1137/1.9781611976083, Computational Science & Engineering 21. SIAM, Philadelphia (2020). (2020) Zbl1553.93002MR4072177DOI10.1137/1.9781611976083
  6. Antoulas, A. C., Sorensen, D. C., Gugercin, S., 10.1090/conm/280, Structured Matrices in Mathematics, Computer Science, and Engineering. I Contemporary Mathematcs 280. AMS, Providence (2001), 193-219. (2001) Zbl1048.93014MR1850408DOI10.1090/conm/280
  7. Baur, U., Beattie, C. A., Benner, P., Gugercin, S., 10.1137/090776925, SIAM J. Sci. Comput. 33 (2011), 2489-2518. (2011) Zbl1254.93032MR2861634DOI10.1137/090776925
  8. Beattie, C., Gugercin, S., 10.1016/j.sysconle.2008.10.016, Syst. Control Lett. 58 (2009), 225-232. (2009) Zbl1159.93317MR2494198DOI10.1016/j.sysconle.2008.10.016
  9. Benner, P., Breiten, T., Damm, T., 10.1080/00207179.2011.601761, Int. J. Control 84 (2011), 1398-1407. (2011) Zbl1230.93010MR2830869DOI10.1080/00207179.2011.601761
  10. Benner, P., Gugercin, S., Willcox, K., 10.1137/130932715, SIAM Rev. 57 (2015), 483-531. (2015) Zbl1339.37089MR3419868DOI10.1137/130932715
  11. Benner, P., Kürschner, P., Tomljanović, Z., Truhar, N., 10.1002/zamm.201400158, ZAMM, Z. Angew. Math. Mech. 96 (2016), 604-619. (2016) Zbl1538.74119MR3502967DOI10.1002/zamm.201400158
  12. Benner, P., Mehrmann, V., (eds.), D. C. Sorensen, 10.1007/3-540-27909-1, Lecture Notes in Computational Science and Engineering 45. Springer, Berlin (2005). (2005) Zbl1066.65004MR2516498DOI10.1007/3-540-27909-1
  13. Benner, P., Sima, V., Voigt, M., 10.1109/TAC.2011.2161833, IEEE Trans. Automat. Control 57 (2012), 233-238. (2012) Zbl1369.93174MR2917665DOI10.1109/TAC.2011.2161833
  14. Boyd, S., Balakrishnan, V., 10.1016/0167-6911(90)90037-U, Syst. Control Lett. 15 (1990), 1-7. (1990) Zbl0704.93014MR1065342DOI10.1016/0167-6911(90)90037-U
  15. Bruinsma, N. A., Steinbuch, M., 10.1016/0167-6911(90)90049-Z, Syst. Control Lett. 14 (1990), 287-293. (1990) Zbl0699.93021MR1052637DOI10.1016/0167-6911(90)90049-Z
  16. Dileep, G., 10.1016/j.renene.2019.08.092, Renewable Energy 146 (2020), 2589-2625. (2020) DOI10.1016/j.renene.2019.08.092
  17. Gallivan, K., Vandendorpe, A., Dooren, P. Van, 10.1137/S0895479803423925, SIAM J. Matrix Anal. Appl. 26 (2004), 328-349. (2004) Zbl1078.41016MR2124150DOI10.1137/S0895479803423925
  18. Gugercin, S., Antoulas, A. C., Beattie, C., 10.1137/060666123, SIAM J. Matrix Anal. Appl. 30 (2008), 609-638. (2008) Zbl1159.93318MR2421462DOI10.1137/060666123
  19. Haddad, W. M., Hui, Q., Lee, J., 10.1137/1.9781611977547, Other Titles in Applied Mathematics 191. SIAM, Philadelphia (2023). (2023) Zbl1520.93002MR4625045DOI10.1137/1.9781611977547
  20. Hagberg, A. A., Schult, D. A., Swart, P. J., Exploring network structure, dynamics, and function using networkX, Proceedings of the 7th Python in Science Conference (SciPy2008) SciPy, Pasadena (2008), 11-16. (2008) 
  21. Leinhardt, S., 10.1016/C2013-0-11063-X, Academic Press, New York (1977). (1977) DOI10.1016/C2013-0-11063-X
  22. Nakić, I., Tolić, D., Palunko, I., Tomljanović, Z., 10.1016/j.ifacol.2022.09.095, IFAC-PapersOnLine 55 (2022), 199-204. (2022) DOI10.1016/j.ifacol.2022.09.095
  23. Nakić, I., Tolić, D., Tomljanović, Z., Palunko, I., 10.1016/j.jfranklin.2022.09.013, J. Franklin Inst. 359 (2022), 9110-9128. (2022) Zbl1501.93012MR4498292DOI10.1016/j.jfranklin.2022.09.013
  24. Olfati-Saber, R., Murray, R. M., 10.1109/TAC.2004.834113, IEEE Trans. Autom. Control 49 (2004), 1520-1533. (2004) Zbl1365.93301MR2086916DOI10.1109/TAC.2004.834113
  25. Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., Jia, W., 10.1016/j.jnca.2018.01.005, J. Network Comput. Appl. 106 (2018), 17-32. (2018) DOI10.1016/j.jnca.2018.01.005
  26. Ren, W., Beard, R. W., 10.1007/978-1-84800-015-5, Communications and Control Engineering. Springer, London (2008). (2008) Zbl1144.93002DOI10.1007/978-1-84800-015-5
  27. Rommes, J., Martins, N., 10.1109/TPWRS.2006.876671, IEEE Trans. Power Syst. 21 (2006), 1218-1226. (2006) DOI10.1109/TPWRS.2006.876671
  28. Rommes, J., Sleijpen, G. L. G., 10.1137/060671401, SIAM J. Matrix Anal. Appl. 30 (2008), 346-363. (2008) Zbl1165.65016MR2399584DOI10.1137/060671401
  29. Sorrentino, F., Tolić, D., Fierro, R., Picozzi, S., Gordon, J. R., Mammoli, A., 10.1109/CDC.2013.6760668, 52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 4964-4970. (2013) DOI10.1109/CDC.2013.6760668
  30. Tolić, D., 10.1109/CDC.2013.6760405, 52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 3409-3414. (2013) DOI10.1109/CDC.2013.6760405
  31. Tolić, D., Jeličić, V., Bilas, V., 10.1049/iet-cta.2014.0576, IET Control Theory Appl. 9 (2015), 915-928. (2015) MR3364336DOI10.1049/iet-cta.2014.0576
  32. Tolić, D., Palunko, I., Ivanović, A., Car, M., Bogdan, S., 10.1109/ECC.2015.7330577, 2015 European Control Conference (ECC) IEEE, Los Alamitos (2015), 404-409. (2015) MR3364036DOI10.1109/ECC.2015.7330577
  33. Tomljanović, Z., Voigt, M., 10.1002/nla.2300, Numer. Linear Algebra Appl. 27 (2020), Article ID e2300, 17 pages. (2020) Zbl1463.93076MR4157212DOI10.1002/nla.2300
  34. Wang, Y., Garcia, E., Casbeer, D., (eds.), F. Zhang, 10.1002/9781119266235, John Wiley & Sons, Hoboken (2017). (2017) Zbl1406.93005MR3618878DOI10.1002/9781119266235
  35. Yue, Y., Meerbergen, K., 10.1137/120869171, SIAM J. Optim. 23 (2013), 1344-1370. (2013) Zbl1273.35279MR3071415DOI10.1137/120869171
  36. Zhou, K., Doyle, J. C., Glover, K., Robust and Optimal Control, Prentice Hall, Upper Saddle River (1996). (1996) Zbl0999.49500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.