analysis of cooperative multi-agent systems by adaptive interpolation
Applications of Mathematics (2025)
- Issue: 3, page 367-386
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTomljanović, Zoran. "$H_{\infty }$ analysis of cooperative multi-agent systems by adaptive interpolation." Applications of Mathematics (2025): 367-386. <http://eudml.org/doc/299989>.
@article{Tomljanović2025,
abstract = {We consider a projection-based model reduction approach to computing the maximal impact, one agent or a group of agents has on the cooperative system. As a criterion for measuring the agent-team impact on multi-agent systems, we use the $H_\{\infty \}$ norm, and output synchronization is taken as the underlying cooperative control scheme. We investigate a projection-based model reduction approach that allows efficient $H_\{\infty \}$ norm calculation. The convergence of this approach depends on initial interpolation points, so we present approaches to their determination. Since the analysis of multi-agent systems is important from different perspectives, several comparisons are presented in the section on numerical experiments. A graph Laplacian matrix of an inter-agent interaction graph is a foundational element in modeling and analyzing multi-agent systems. We consider various graph topology matrices, system parameters, and excitations of different agents. Different strategies for selecting initial interpolation points are also compared with baseline approaches for calculating the $H_\{\infty \}$ norm.},
author = {Tomljanović, Zoran},
journal = {Applications of Mathematics},
keywords = {multi-agent system; $H_\{\infty \}$ norm; network robustness; adaptive interpolation},
language = {eng},
number = {3},
pages = {367-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$H_\{\infty \}$ analysis of cooperative multi-agent systems by adaptive interpolation},
url = {http://eudml.org/doc/299989},
year = {2025},
}
TY - JOUR
AU - Tomljanović, Zoran
TI - $H_{\infty }$ analysis of cooperative multi-agent systems by adaptive interpolation
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 3
SP - 367
EP - 386
AB - We consider a projection-based model reduction approach to computing the maximal impact, one agent or a group of agents has on the cooperative system. As a criterion for measuring the agent-team impact on multi-agent systems, we use the $H_{\infty }$ norm, and output synchronization is taken as the underlying cooperative control scheme. We investigate a projection-based model reduction approach that allows efficient $H_{\infty }$ norm calculation. The convergence of this approach depends on initial interpolation points, so we present approaches to their determination. Since the analysis of multi-agent systems is important from different perspectives, several comparisons are presented in the section on numerical experiments. A graph Laplacian matrix of an inter-agent interaction graph is a foundational element in modeling and analyzing multi-agent systems. We consider various graph topology matrices, system parameters, and excitations of different agents. Different strategies for selecting initial interpolation points are also compared with baseline approaches for calculating the $H_{\infty }$ norm.
LA - eng
KW - multi-agent system; $H_{\infty }$ norm; network robustness; adaptive interpolation
UR - http://eudml.org/doc/299989
ER -
References
top- Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M., 10.1002/pamm.201710343, PAMM, Proc. Appl. Math. Mech. 17 (2017), 751-752. (2017) DOI10.1002/pamm.201710343
- Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M., 10.1137/16M1086200, SIAM J. Matrix Anal. Appl. 38 (2017), 1496-1516. (2017) Zbl1379.65020MR3735291DOI10.1137/16M1086200
- Antoulas, A. C., 10.1137/1.9780898718713, Advances in Design and Control 6. SIAM, Philadelphia (2005). (2005) Zbl1112.93002MR2155615DOI10.1137/1.9780898718713
- Antoulas, A. C., Beattie, C. A., Gugercin, S., 10.1007/978-1-4419-5757-3_1, Efficient Modeling and Control of Large-Scale Systems Springer, New York (2010), 3-58. (2010) Zbl1229.65103MR0593759DOI10.1007/978-1-4419-5757-3_1
- Antoulas, A. C., Beattie, C. A., Güğercin, S., 10.1137/1.9781611976083, Computational Science & Engineering 21. SIAM, Philadelphia (2020). (2020) Zbl1553.93002MR4072177DOI10.1137/1.9781611976083
- Antoulas, A. C., Sorensen, D. C., Gugercin, S., 10.1090/conm/280, Structured Matrices in Mathematics, Computer Science, and Engineering. I Contemporary Mathematcs 280. AMS, Providence (2001), 193-219. (2001) Zbl1048.93014MR1850408DOI10.1090/conm/280
- Baur, U., Beattie, C. A., Benner, P., Gugercin, S., 10.1137/090776925, SIAM J. Sci. Comput. 33 (2011), 2489-2518. (2011) Zbl1254.93032MR2861634DOI10.1137/090776925
- Beattie, C., Gugercin, S., 10.1016/j.sysconle.2008.10.016, Syst. Control Lett. 58 (2009), 225-232. (2009) Zbl1159.93317MR2494198DOI10.1016/j.sysconle.2008.10.016
- Benner, P., Breiten, T., Damm, T., 10.1080/00207179.2011.601761, Int. J. Control 84 (2011), 1398-1407. (2011) Zbl1230.93010MR2830869DOI10.1080/00207179.2011.601761
- Benner, P., Gugercin, S., Willcox, K., 10.1137/130932715, SIAM Rev. 57 (2015), 483-531. (2015) Zbl1339.37089MR3419868DOI10.1137/130932715
- Benner, P., Kürschner, P., Tomljanović, Z., Truhar, N., 10.1002/zamm.201400158, ZAMM, Z. Angew. Math. Mech. 96 (2016), 604-619. (2016) Zbl1538.74119MR3502967DOI10.1002/zamm.201400158
- Benner, P., Mehrmann, V., (eds.), D. C. Sorensen, 10.1007/3-540-27909-1, Lecture Notes in Computational Science and Engineering 45. Springer, Berlin (2005). (2005) Zbl1066.65004MR2516498DOI10.1007/3-540-27909-1
- Benner, P., Sima, V., Voigt, M., 10.1109/TAC.2011.2161833, IEEE Trans. Automat. Control 57 (2012), 233-238. (2012) Zbl1369.93174MR2917665DOI10.1109/TAC.2011.2161833
- Boyd, S., Balakrishnan, V., 10.1016/0167-6911(90)90037-U, Syst. Control Lett. 15 (1990), 1-7. (1990) Zbl0704.93014MR1065342DOI10.1016/0167-6911(90)90037-U
- Bruinsma, N. A., Steinbuch, M., 10.1016/0167-6911(90)90049-Z, Syst. Control Lett. 14 (1990), 287-293. (1990) Zbl0699.93021MR1052637DOI10.1016/0167-6911(90)90049-Z
- Dileep, G., 10.1016/j.renene.2019.08.092, Renewable Energy 146 (2020), 2589-2625. (2020) DOI10.1016/j.renene.2019.08.092
- Gallivan, K., Vandendorpe, A., Dooren, P. Van, 10.1137/S0895479803423925, SIAM J. Matrix Anal. Appl. 26 (2004), 328-349. (2004) Zbl1078.41016MR2124150DOI10.1137/S0895479803423925
- Gugercin, S., Antoulas, A. C., Beattie, C., 10.1137/060666123, SIAM J. Matrix Anal. Appl. 30 (2008), 609-638. (2008) Zbl1159.93318MR2421462DOI10.1137/060666123
- Haddad, W. M., Hui, Q., Lee, J., 10.1137/1.9781611977547, Other Titles in Applied Mathematics 191. SIAM, Philadelphia (2023). (2023) Zbl1520.93002MR4625045DOI10.1137/1.9781611977547
- Hagberg, A. A., Schult, D. A., Swart, P. J., Exploring network structure, dynamics, and function using networkX, Proceedings of the 7th Python in Science Conference (SciPy2008) SciPy, Pasadena (2008), 11-16. (2008)
- Leinhardt, S., 10.1016/C2013-0-11063-X, Academic Press, New York (1977). (1977) DOI10.1016/C2013-0-11063-X
- Nakić, I., Tolić, D., Palunko, I., Tomljanović, Z., 10.1016/j.ifacol.2022.09.095, IFAC-PapersOnLine 55 (2022), 199-204. (2022) DOI10.1016/j.ifacol.2022.09.095
- Nakić, I., Tolić, D., Tomljanović, Z., Palunko, I., 10.1016/j.jfranklin.2022.09.013, J. Franklin Inst. 359 (2022), 9110-9128. (2022) Zbl1501.93012MR4498292DOI10.1016/j.jfranklin.2022.09.013
- Olfati-Saber, R., Murray, R. M., 10.1109/TAC.2004.834113, IEEE Trans. Autom. Control 49 (2004), 1520-1533. (2004) Zbl1365.93301MR2086916DOI10.1109/TAC.2004.834113
- Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., Jia, W., 10.1016/j.jnca.2018.01.005, J. Network Comput. Appl. 106 (2018), 17-32. (2018) DOI10.1016/j.jnca.2018.01.005
- Ren, W., Beard, R. W., 10.1007/978-1-84800-015-5, Communications and Control Engineering. Springer, London (2008). (2008) Zbl1144.93002DOI10.1007/978-1-84800-015-5
- Rommes, J., Martins, N., 10.1109/TPWRS.2006.876671, IEEE Trans. Power Syst. 21 (2006), 1218-1226. (2006) DOI10.1109/TPWRS.2006.876671
- Rommes, J., Sleijpen, G. L. G., 10.1137/060671401, SIAM J. Matrix Anal. Appl. 30 (2008), 346-363. (2008) Zbl1165.65016MR2399584DOI10.1137/060671401
- Sorrentino, F., Tolić, D., Fierro, R., Picozzi, S., Gordon, J. R., Mammoli, A., 10.1109/CDC.2013.6760668, 52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 4964-4970. (2013) DOI10.1109/CDC.2013.6760668
- Tolić, D., 10.1109/CDC.2013.6760405, 52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 3409-3414. (2013) DOI10.1109/CDC.2013.6760405
- Tolić, D., Jeličić, V., Bilas, V., 10.1049/iet-cta.2014.0576, IET Control Theory Appl. 9 (2015), 915-928. (2015) MR3364336DOI10.1049/iet-cta.2014.0576
- Tolić, D., Palunko, I., Ivanović, A., Car, M., Bogdan, S., 10.1109/ECC.2015.7330577, 2015 European Control Conference (ECC) IEEE, Los Alamitos (2015), 404-409. (2015) MR3364036DOI10.1109/ECC.2015.7330577
- Tomljanović, Z., Voigt, M., 10.1002/nla.2300, Numer. Linear Algebra Appl. 27 (2020), Article ID e2300, 17 pages. (2020) Zbl1463.93076MR4157212DOI10.1002/nla.2300
- Wang, Y., Garcia, E., Casbeer, D., (eds.), F. Zhang, 10.1002/9781119266235, John Wiley & Sons, Hoboken (2017). (2017) Zbl1406.93005MR3618878DOI10.1002/9781119266235
- Yue, Y., Meerbergen, K., 10.1137/120869171, SIAM J. Optim. 23 (2013), 1344-1370. (2013) Zbl1273.35279MR3071415DOI10.1137/120869171
- Zhou, K., Doyle, J. C., Glover, K., Robust and Optimal Control, Prentice Hall, Upper Saddle River (1996). (1996) Zbl0999.49500
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.