Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies
Elmostafa Bendib; Mustapha Khiddi
Applications of Mathematics (2025)
- Issue: 3, page 441-456
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBendib, Elmostafa, and Khiddi, Mustapha. "Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies." Applications of Mathematics (2025): 441-456. <http://eudml.org/doc/299995>.
@article{Bendib2025,
abstract = {We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.},
author = {Bendib, Elmostafa, Khiddi, Mustapha},
journal = {Applications of Mathematics},
keywords = {Kirchhoff type problem; Orlicz-Sobolev space; $\Delta _\{2\}$-condition},
language = {eng},
number = {3},
pages = {441-456},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies},
url = {http://eudml.org/doc/299995},
year = {2025},
}
TY - JOUR
AU - Bendib, Elmostafa
AU - Khiddi, Mustapha
TI - Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 3
SP - 441
EP - 456
AB - We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.
LA - eng
KW - Kirchhoff type problem; Orlicz-Sobolev space; $\Delta _{2}$-condition
UR - http://eudml.org/doc/299995
ER -
References
top- Benci, V., Fortunato, D., Pisani, L., 10.1142/S0129055X98000100, Rev. Math. Phys. 10 (1998), 315-344. (1998) Zbl0921.35177MR1626832DOI10.1142/S0129055X98000100
- Dacorogna, B., 10.1142/q0451, World Scientific, Singapore (2025). (2025) Zbl1548.49001MR4810953DOI10.1142/q0451
- Donaldson, T., 10.1016/0022-0396(71)90009-X, J. Differ. Equations 10 (1971), 507-528. (1971) Zbl0218.35028MR0298472DOI10.1016/0022-0396(71)90009-X
- Donaldson, T. K., Trudinger, N. S., 10.1016/0022-1236(71)90018-8, J. Funct. Anal. 8 (1971), 52-75. (1971) Zbl0216.15702MR0301500DOI10.1016/0022-1236(71)90018-8
- Fukagai, N., Ito, M., Narukawa, K., 10.1619/fesi.49.235, Funkc. Ekvacioj, Ser. Int. 49 (2006), 235-267. (2006) Zbl1387.35405MR2271234DOI10.1619/fesi.49.235
- Fukagai, N., Ito, M., Narukawa, K., 10.1017/S0308210507000765, Proc. R. Soc. Edinb., Sect. A, Math. 139 (2009), 73-106. (2009) Zbl1169.35017MR2487034DOI10.1017/S0308210507000765
- Fukagai, N., Narukawa, K., 10.32917/hmj/1206127823, Hiroshima Math. J. 25 (1995), 19-41. (1995) Zbl0836.35112MR1322600DOI10.32917/hmj/1206127823
- Fukagai, N., Narukawa, K., 10.1007/s10231-006-0018-x, Ann. Mat. Pura Appl. (4) 186 (2007), 539-564. (2007) Zbl1223.35132MR2317653DOI10.1007/s10231-006-0018-x
- Azorero, J. Garcia, Alonso, I. Peral, 10.1090/S0002-9947-1991-1083144-2, Trans. Am. Math. Soc. 323 (1991), 877-895. (1991) Zbl0729.35051MR1083144DOI10.1090/S0002-9947-1991-1083144-2
- Hssini, E. M., Tsouli, N., Haddaoui, M., 10.1515/apam-2016-0065, Adv. Pure Appl. Math. 8 (2017), 197-208. (2017) Zbl1381.35041MR3667067DOI10.1515/apam-2016-0065
- Kavian, O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Mathématiques & Applications (Berlin) 13. Springer, Paris (1993), French. (1993) Zbl0797.58005MR1276944
- Khiddi, M., Sbai, S. M., 10.1080/17476933.2019.1627527, Complex Var. Elliptic Equ. 65 (2020), 368-380. (2020) Zbl1430.35255MR4052692DOI10.1080/17476933.2019.1627527
- Lions, P.-L., 10.4171/RMI/6, Rev. Mat. Iberoam. 1 (1985), 145-201. (1985) Zbl0704.49005MR0834360DOI10.4171/RMI/6
- Mihăilescu, M., Repovš, D., 10.1016/j.amc.2011.01.050, Appl. Math. Comput. 217 (2011), 6624-6632. (2011) Zbl1211.35117MR2773249DOI10.1016/j.amc.2011.01.050
- Tsouli, N., Haddaoui, M., Hssini, E. M., Multiple solutions for a critical -Kirchhoff type equations, Bol. Soc. Parana Mat. (3) 38 (2020), 197-211. (2020) Zbl1431.35014MR3912304
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.