Congruences and ideals in ternary rings
Ivan Chajda; Radomír Halaš; František Machala
Czechoslovak Mathematical Journal (1997)
- Volume: 47, Issue: 1, page 163-172
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChajda, Ivan, Halaš, Radomír, and Machala, František. "Congruences and ideals in ternary rings." Czechoslovak Mathematical Journal 47.1 (1997): 163-172. <http://eudml.org/doc/30355>.
@article{Chajda1997,
abstract = {A ternary ring is an algebraic structure $\{\mathcal \{R\}\}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on $\{\mathcal \{R\}\}$ is called normal if $\{\mathcal \{R\}\}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on $\{\mathcal \{R\}\}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels.},
author = {Chajda, Ivan, Halaš, Radomír, Machala, František},
journal = {Czechoslovak Mathematical Journal},
keywords = {ternary ring; ideal; congruence; normal congruence; congruence kernel; ternary ring; ideal; congruence},
language = {eng},
number = {1},
pages = {163-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruences and ideals in ternary rings},
url = {http://eudml.org/doc/30355},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Chajda, Ivan
AU - Halaš, Radomír
AU - Machala, František
TI - Congruences and ideals in ternary rings
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 1
SP - 163
EP - 172
AB - A ternary ring is an algebraic structure ${\mathcal {R}}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal {R}}$ is called normal if ${\mathcal {R}}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal {R}}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels.
LA - eng
KW - ternary ring; ideal; congruence; normal congruence; congruence kernel; ternary ring; ideal; congruence
UR - http://eudml.org/doc/30355
ER -
References
top- 10.1090/S0002-9904-1948-09146-7, Bull. Amer. Math. Soc. 54 (1948), 1180–1185. (1948) DOI10.1090/S0002-9904-1948-09146-7
- Congruences and ideals in semiloops, Acta Sci. Math. (Szeged) 59 (1994), 43–47. (1994)
- Ideals in bi-ternary rings, Discussione Math. Algebra and Stochastic Methods 15 (1995), 11–21. (1995)
- 10.1007/BF01191491, Algebra Univ. 19 (1984), 45–54. (1984) DOI10.1007/BF01191491
- 10.1090/S0002-9947-1943-0008892-4, Trans. Amer. Math. Soc. 54 (1943), 229–277. (1943) Zbl0060.32209DOI10.1090/S0002-9947-1943-0008892-4
- 10.7146/math.scand.a-10377, Math. Scand. 1 (1953), 193–206. (1953) DOI10.7146/math.scand.a-10377
- Erweiterte lokale Ternärringe, Czech. Math. J. 27 (1977), 560–572. (1977) Zbl0391.17003
- Koordinatisation projectiver Ebenen mit Homomorphismus, Czech. Math. J. 27 (1977), 573–590. (1977)
- Koordinatisation affiner Ebenen mit Homomorphismus, Math. Slovaca 27 (1977), 181–193. (1977) Zbl0359.50017
- ARRAY(0x9fa9250), Heidelberg, New York, 1975, pp. . (1975)
- Sulle varietá di algebra con una buona teoria degli ideali, Bull. U.M.I. 6 (1972), no. 4, 90–95. (1972)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.