The conductor of a cyclic quartic field using Gauss sums

Blair K. Spearman; Kenneth S. Williams

Czechoslovak Mathematical Journal (1997)

  • Volume: 47, Issue: 3, page 453-462
  • ISSN: 0011-4642

Abstract

top
Let Q denote the field of rational numbers. Let K be a cyclic quartic extension of Q . It is known that there are unique integers A , B , C , D such that K = Q A ( D + B D ) , where A is squarefree and odd , D = B 2 + C 2 is squarefree , B > 0 , C > 0 , G C D ( A , D ) = 1 . The conductor f ( K ) of K is f ( K ) = 2 l | A | D , where l = 3 , if D 2 ( mod 4 ) or D 1 ( mod 4 ) , B 1 ( mod 2 ) , 2 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 3 ( mod 4 ) , 0 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 1 ( mod 4 ) . A simple proof of this formula for f ( K ) is given, which uses the basic properties of quartic Gauss sums.

How to cite

top

Spearman, Blair K., and Williams, Kenneth S.. "The conductor of a cyclic quartic field using Gauss sums." Czechoslovak Mathematical Journal 47.3 (1997): 453-462. <http://eudml.org/doc/30375>.

@article{Spearman1997,
abstract = {Let $Q$ denote the field of rational numbers. Let $K$ be a cyclic quartic extension of $Q$. It is known that there are unique integers $A$, $B$, $C$, $D$ such that \[ K=Q\Big (\sqrt\{A(D+B\sqrt\{D\})\}\Big ), \] where \[ A \ \text\{is squarefree and odd\}, D=B^2+C^2 \ \text\{is squarefree\}, \ B>0, \ C>0, GCD(A,D) = 1. \] The conductor $f(K)$ of $K$ is $f(K) = 2^l|A|D$, where \[ l= \{\left\lbrace \begin\{array\}\{ll\} 3, \quad \text\{if\} \ D\equiv 2 \hspace\{10.0pt\}(\@mod \; 4) \ \text\{or\} \ D \equiv 1 \hspace\{10.0pt\}(\@mod \; 4), \ B \equiv 1 \hspace\{10.0pt\}(\@mod \; 2), \\ 2, \quad \text\{if\} \ D\equiv 1 \hspace\{10.0pt\}(\@mod \; 4), \ B \equiv 0 \hspace\{10.0pt\}(\@mod \; 2), \ A + B \equiv 3 \hspace\{10.0pt\}(\@mod \; 4), \\ 0, \quad \text\{if\} \ D\equiv 1 \hspace\{10.0pt\}(\@mod \; 4), \ B \equiv 0 \hspace\{10.0pt\}(\@mod \; 2), \ A + B \equiv 1 \hspace\{10.0pt\}(\@mod \; 4). \end\{array\}\right.\} \] A simple proof of this formula for $f(K)$ is given, which uses the basic properties of quartic Gauss sums.},
author = {Spearman, Blair K., Williams, Kenneth S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {cyclic quartic extension; conductor; Gauss sums},
language = {eng},
number = {3},
pages = {453-462},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The conductor of a cyclic quartic field using Gauss sums},
url = {http://eudml.org/doc/30375},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Spearman, Blair K.
AU - Williams, Kenneth S.
TI - The conductor of a cyclic quartic field using Gauss sums
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 3
SP - 453
EP - 462
AB - Let $Q$ denote the field of rational numbers. Let $K$ be a cyclic quartic extension of $Q$. It is known that there are unique integers $A$, $B$, $C$, $D$ such that \[ K=Q\Big (\sqrt{A(D+B\sqrt{D})}\Big ), \] where \[ A \ \text{is squarefree and odd}, D=B^2+C^2 \ \text{is squarefree}, \ B>0, \ C>0, GCD(A,D) = 1. \] The conductor $f(K)$ of $K$ is $f(K) = 2^l|A|D$, where \[ l= {\left\lbrace \begin{array}{ll} 3, \quad \text{if} \ D\equiv 2 \hspace{10.0pt}(\@mod \; 4) \ \text{or} \ D \equiv 1 \hspace{10.0pt}(\@mod \; 4), \ B \equiv 1 \hspace{10.0pt}(\@mod \; 2), \\ 2, \quad \text{if} \ D\equiv 1 \hspace{10.0pt}(\@mod \; 4), \ B \equiv 0 \hspace{10.0pt}(\@mod \; 2), \ A + B \equiv 3 \hspace{10.0pt}(\@mod \; 4), \\ 0, \quad \text{if} \ D\equiv 1 \hspace{10.0pt}(\@mod \; 4), \ B \equiv 0 \hspace{10.0pt}(\@mod \; 2), \ A + B \equiv 1 \hspace{10.0pt}(\@mod \; 4). \end{array}\right.} \] A simple proof of this formula for $f(K)$ is given, which uses the basic properties of quartic Gauss sums.
LA - eng
KW - cyclic quartic extension; conductor; Gauss sums
UR - http://eudml.org/doc/30375
ER -

References

top
  1. Calculation of the class numbers of imaginary cyclic quartic fields, Carleton-Ottawa Mathematical Lecture Note Series (Carleton University, Ottawa, Ontario, Canada), Number 7, July 1986, pp. 201. (July 1986) MR0906194
  2. A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, Second Edition (1990). (1990) MR1070716

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.