# A study of $q$-Laguerre polynomials through the ${T}_{k,q,x}$-operator

Czechoslovak Mathematical Journal (1997)

- Volume: 47, Issue: 4, page 619-626
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topKhan, Mumtaz Ahmad. "A study of $q$-Laguerre polynomials through the $T_{k,q,x}$-operator." Czechoslovak Mathematical Journal 47.4 (1997): 619-626. <http://eudml.org/doc/30387>.

@article{Khan1997,

abstract = {The present paper deals with certain generating functions and recurrence relations for $q$-Laguerre polynomials through the use of the $T_\{k,q,x\}$-operator introduced in an earlier paper [7].},

author = {Khan, Mumtaz Ahmad},

journal = {Czechoslovak Mathematical Journal},

keywords = {Laguerre polynomials; generating functions; recurrence formulas},

language = {eng},

number = {4},

pages = {619-626},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {A study of $q$-Laguerre polynomials through the $T_\{k,q,x\}$-operator},

url = {http://eudml.org/doc/30387},

volume = {47},

year = {1997},

}

TY - JOUR

AU - Khan, Mumtaz Ahmad

TI - A study of $q$-Laguerre polynomials through the $T_{k,q,x}$-operator

JO - Czechoslovak Mathematical Journal

PY - 1997

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 47

IS - 4

SP - 619

EP - 626

AB - The present paper deals with certain generating functions and recurrence relations for $q$-Laguerre polynomials through the use of the $T_{k,q,x}$-operator introduced in an earlier paper [7].

LA - eng

KW - Laguerre polynomials; generating functions; recurrence formulas

UR - http://eudml.org/doc/30387

ER -

## References

top- Operational representation for the Laguerre and Hermite polynomials, Duke Math. Journal 31 (1964), 127–142. (1964) MR0159053
- 10.1002/mana.19650300105, Math. Nachr. 30 (1965), 47–61. (1965) MR0197804DOI10.1002/mana.19650300105
- 10.1002/mana.19490020604, Math. Nachr. 2 (1949), 340–379. (1949) MR0035344DOI10.1002/mana.19490020604
- Certain fractional $q$-integrals and $q$-derivatives, Nanta Mathematica 7 (1974), no. 1, 52–60. (1974) Zbl0289.33009MR0369630
- On $q$-Laguerre polynomials, Ganita 34 (1983), no. 1 and 2, 111–123. (1983) Zbl0638.33006MR0910619
- $q$-Analogue of certain operational formulae, Houston J. Math. 13 (1987), no. 1, pp. 75–82. (1987) MR0884235
- On a calculus for the ${T}_{k,q,x}$-operator, Mathematica Balkanica, New series 6 (1992), fasc. 1, pp. 83–90. (1992) MR1170732
- On some operational representations of $q$-polynomials, Czechoslovak Mathematical Journal 45 (1995), 457–464. (1995) Zbl0836.33009MR1344511
- On some characterizations of $q$-Bessel polynomials, Acta Math. Viet. 15 (1990), no. 1, pp. 55–59. (1990) MR1087787
- Some generating functions, Univ. Lisbova Revista Fae. Ci A(2). Mat. 13 (1970), 43–51. (1970) Zbl0229.33015MR0308486
- Special Functions, The MacMillan Co., New York (1960). (1960) Zbl0092.06503MR0107725
- Generalized Hypergeometric Functions, Cambridge University Press (1966). (1966) Zbl0135.28101MR0201688
- A Treatise on Generating Functions, John Wiley and Sons (Halsted Press), New York, Ellis Horwood, Chichester, 1985. (1985) MR0750112

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.