On operators with the same local spectra
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 1, page 77-83
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTorgašev, Aleksandar. "On operators with the same local spectra." Czechoslovak Mathematical Journal 48.1 (1998): 77-83. <http://eudml.org/doc/30403>.
@article{Torgašev1998,
abstract = {Let $B(X)$ be the algebra of all bounded linear operators in a complex Banach space $X$. We consider operators $T_1,T_2\in B(X)$ satisfying the relation $\sigma _\{T_1\}(x) = \sigma _\{T_2\}(x)$ for any vector $x\in X$, where $\sigma _T(x)$ denotes the local spectrum of $T\in B(X)$ at the point $x\in X$. We say then that $T_1$ and $T_2$ have the same local spectra. We prove that then, under some conditions, $T_1 - T_2$ is a quasinilpotent operator, that is $\Vert (T_1 - T_2)^n\Vert ^\{1/n\} \rightarrow 0$ as $n \rightarrow \infty $. Without these conditions, we describe the operators with the same local spectra only in some particular cases.},
author = {Torgašev, Aleksandar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach space; spectrum; local spectrum; Banach space; spectrum; local spectrum},
language = {eng},
number = {1},
pages = {77-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On operators with the same local spectra},
url = {http://eudml.org/doc/30403},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Torgašev, Aleksandar
TI - On operators with the same local spectra
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 1
SP - 77
EP - 83
AB - Let $B(X)$ be the algebra of all bounded linear operators in a complex Banach space $X$. We consider operators $T_1,T_2\in B(X)$ satisfying the relation $\sigma _{T_1}(x) = \sigma _{T_2}(x)$ for any vector $x\in X$, where $\sigma _T(x)$ denotes the local spectrum of $T\in B(X)$ at the point $x\in X$. We say then that $T_1$ and $T_2$ have the same local spectra. We prove that then, under some conditions, $T_1 - T_2$ is a quasinilpotent operator, that is $\Vert (T_1 - T_2)^n\Vert ^{1/n} \rightarrow 0$ as $n \rightarrow \infty $. Without these conditions, we describe the operators with the same local spectra only in some particular cases.
LA - eng
KW - Banach space; spectrum; local spectrum; Banach space; spectrum; local spectrum
UR - http://eudml.org/doc/30403
ER -
References
top- Quasinilpotent equivalence of not necessarily commuting operators, Journal Math. Mech. 15 (1966), 521–540. (1966) MR0192344
- Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. (1968) MR0394282
- 10.1007/BF01234965, Arch. Math. 14 (1963), 341–349. (1963) MR0152893DOI10.1007/BF01234965
- 10.2140/pjm.1968.27.305, Pacific J. Math. 27(2) (1968), 305–324. (1968) Zbl0172.17204MR0236738DOI10.2140/pjm.1968.27.305
- 10.2140/pjm.1964.14.333, Pacific J. Math. 14 (1964), 333–352. (1964) Zbl0197.39501MR0164242DOI10.2140/pjm.1964.14.333
- On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483–492. (1973) MR0322536
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.