Locally spectrally bounded linear maps

M. Bendaoud; M. Sarih

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 1, page 81-89
  • ISSN: 0862-7959

Abstract

top
Let ( ) be the algebra of all bounded linear operators on a complex Hilbert space . We characterize locally spectrally bounded linear maps from ( ) onto itself. As a consequence, we describe linear maps from ( ) onto itself that compress the local spectrum.

How to cite

top

Bendaoud, M., and Sarih, M.. "Locally spectrally bounded linear maps." Mathematica Bohemica 136.1 (2011): 81-89. <http://eudml.org/doc/196805>.

@article{Bendaoud2011,
abstract = {Let $\{\mathcal \{L\}\}(\{\mathcal \{H\}\})$ be the algebra of all bounded linear operators on a complex Hilbert space $\{\mathcal \{H\}\}$. We characterize locally spectrally bounded linear maps from $\{\mathcal \{L\}\}(\{\mathcal \{H\}\})$ onto itself. As a consequence, we describe linear maps from $\{\mathcal \{L\}\}(\{\mathcal \{H\}\})$ onto itself that compress the local spectrum.},
author = {Bendaoud, M., Sarih, M.},
journal = {Mathematica Bohemica},
keywords = {local spectrum; local spectral radius; linear preservers; local spectrum; local spectral radius; linear preservers},
language = {eng},
number = {1},
pages = {81-89},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally spectrally bounded linear maps},
url = {http://eudml.org/doc/196805},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Bendaoud, M.
AU - Sarih, M.
TI - Locally spectrally bounded linear maps
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 1
SP - 81
EP - 89
AB - Let ${\mathcal {L}}({\mathcal {H}})$ be the algebra of all bounded linear operators on a complex Hilbert space ${\mathcal {H}}$. We characterize locally spectrally bounded linear maps from ${\mathcal {L}}({\mathcal {H}})$ onto itself. As a consequence, we describe linear maps from ${\mathcal {L}}({\mathcal {H}})$ onto itself that compress the local spectrum.
LA - eng
KW - local spectrum; local spectral radius; linear preservers; local spectrum; local spectral radius; linear preservers
UR - http://eudml.org/doc/196805
ER -

References

top
  1. Aiena, P., Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers (2004). (2004) Zbl1077.47001MR2070395
  2. Akbari, S., Aryapoor, M., 10.1090/S0002-9939-03-07262-9, Proc. Amer. Math. Soc. 132 (2004), 1621-1625. (2004) Zbl1041.15001MR2051122DOI10.1090/S0002-9939-03-07262-9
  3. Bendaoud, M., Bourhim, A., Essentially spectrally bounded linear maps, Proc. Amer. Math. Soc. 92 (2009), 257-265. (2009) Zbl1177.47048MR2496677
  4. Bendaoud, M., Sarih, M., Linear maps preserving the local spectral radius, preprint, . 
  5. Torgašev, A., 10.1023/A:1022467611697, Czech. Math. J. 48 (1998), 77-83. (1998) MR1614080DOI10.1023/A:1022467611697
  6. Bourhim, A., Miller, V. G., 10.4064/sm188-1-4, Studia Math. 188 (2008), 67-75. (2008) MR2430550DOI10.4064/sm188-1-4
  7. Bračič, J., Müller, V., Local spectrum and local spectral radius at a fixed vector, Studia Math. 194 (2009), 155-162. (2009) MR2534182
  8. Chernoff, P. R., 10.1016/0022-1236(73)90080-3, J. Funct. Anal. 12 (1973), 257-289. (1973) Zbl0252.46086MR0350442DOI10.1016/0022-1236(73)90080-3
  9. González, M., Mbekhta, M., Linear maps on M n ( ) preserving the local spectrum, Linear Algebra Appl. 427 (2007), 176-182. (2007) Zbl1127.15005MR2351350
  10. Herstein, I. N., 10.1090/S0002-9947-1956-0076751-6, Trans. Amer. Math. Soc. 81 (1956), 331-341. (1956) Zbl0073.02202MR0076751DOI10.1090/S0002-9947-1956-0076751-6
  11. Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, Oxford University Press, New York (2000). (2000) Zbl0957.47004MR1747914
  12. Richart, C. E., General Theory of Banach Algebras, Van Nostrand, Princeton (1960). (1960) MR0115101
  13. Šemrl, P., 10.1093/qmathj/49.1.87, Quart. J. Math. Oxford 49 (1998), 87-92. (1998) MR1617339DOI10.1093/qmathj/49.1.87

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.