Locally spectrally bounded linear maps
Mathematica Bohemica (2011)
- Volume: 136, Issue: 1, page 81-89
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBendaoud, M., and Sarih, M.. "Locally spectrally bounded linear maps." Mathematica Bohemica 136.1 (2011): 81-89. <http://eudml.org/doc/196805>.
@article{Bendaoud2011,
abstract = {Let $\{\mathcal \{L\}\}(\{\mathcal \{H\}\})$ be the algebra of all bounded linear operators on a complex Hilbert space $\{\mathcal \{H\}\}$. We characterize locally spectrally bounded linear maps from $\{\mathcal \{L\}\}(\{\mathcal \{H\}\})$ onto itself. As a consequence, we describe linear maps from $\{\mathcal \{L\}\}(\{\mathcal \{H\}\})$ onto itself that compress the local spectrum.},
author = {Bendaoud, M., Sarih, M.},
journal = {Mathematica Bohemica},
keywords = {local spectrum; local spectral radius; linear preservers; local spectrum; local spectral radius; linear preservers},
language = {eng},
number = {1},
pages = {81-89},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally spectrally bounded linear maps},
url = {http://eudml.org/doc/196805},
volume = {136},
year = {2011},
}
TY - JOUR
AU - Bendaoud, M.
AU - Sarih, M.
TI - Locally spectrally bounded linear maps
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 1
SP - 81
EP - 89
AB - Let ${\mathcal {L}}({\mathcal {H}})$ be the algebra of all bounded linear operators on a complex Hilbert space ${\mathcal {H}}$. We characterize locally spectrally bounded linear maps from ${\mathcal {L}}({\mathcal {H}})$ onto itself. As a consequence, we describe linear maps from ${\mathcal {L}}({\mathcal {H}})$ onto itself that compress the local spectrum.
LA - eng
KW - local spectrum; local spectral radius; linear preservers; local spectrum; local spectral radius; linear preservers
UR - http://eudml.org/doc/196805
ER -
References
top- Aiena, P., Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers (2004). (2004) Zbl1077.47001MR2070395
- Akbari, S., Aryapoor, M., 10.1090/S0002-9939-03-07262-9, Proc. Amer. Math. Soc. 132 (2004), 1621-1625. (2004) Zbl1041.15001MR2051122DOI10.1090/S0002-9939-03-07262-9
- Bendaoud, M., Bourhim, A., Essentially spectrally bounded linear maps, Proc. Amer. Math. Soc. 92 (2009), 257-265. (2009) Zbl1177.47048MR2496677
- Bendaoud, M., Sarih, M., Linear maps preserving the local spectral radius, preprint, .
- Torgašev, A., 10.1023/A:1022467611697, Czech. Math. J. 48 (1998), 77-83. (1998) MR1614080DOI10.1023/A:1022467611697
- Bourhim, A., Miller, V. G., 10.4064/sm188-1-4, Studia Math. 188 (2008), 67-75. (2008) MR2430550DOI10.4064/sm188-1-4
- Bračič, J., Müller, V., Local spectrum and local spectral radius at a fixed vector, Studia Math. 194 (2009), 155-162. (2009) MR2534182
- Chernoff, P. R., 10.1016/0022-1236(73)90080-3, J. Funct. Anal. 12 (1973), 257-289. (1973) Zbl0252.46086MR0350442DOI10.1016/0022-1236(73)90080-3
- González, M., Mbekhta, M., Linear maps on preserving the local spectrum, Linear Algebra Appl. 427 (2007), 176-182. (2007) Zbl1127.15005MR2351350
- Herstein, I. N., 10.1090/S0002-9947-1956-0076751-6, Trans. Amer. Math. Soc. 81 (1956), 331-341. (1956) Zbl0073.02202MR0076751DOI10.1090/S0002-9947-1956-0076751-6
- Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, Oxford University Press, New York (2000). (2000) Zbl0957.47004MR1747914
- Richart, C. E., General Theory of Banach Algebras, Van Nostrand, Princeton (1960). (1960) MR0115101
- Šemrl, P., 10.1093/qmathj/49.1.87, Quart. J. Math. Oxford 49 (1998), 87-92. (1998) MR1617339DOI10.1093/qmathj/49.1.87
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.