An asymptotic theorem for a class of nonlinear neutral differential equations
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 3, page 419-432
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNaito, Manabu. "An asymptotic theorem for a class of nonlinear neutral differential equations." Czechoslovak Mathematical Journal 48.3 (1998): 419-432. <http://eudml.org/doc/30430>.
@article{Naito1998,
abstract = {The neutral differential equation (1.1) \[ \frac\{\{\mathrm \{d\}\}^n\}\{\{\mathrm \{d\}\} t^n\} [x(t)+x(t-\tau )] + \sigma F(t,x(g(t))) = 0, \]
is considered under the following conditions: $n\ge 2$, $\tau >0$, $\sigma = \pm 1$, $F(t,u)$ is nonnegative on $[t_0, \infty ) \times (0,\infty )$ and is nondecreasing in $u\in (0,\infty )$, and $\lim g(t) = \infty $ as $t\rightarrow \infty $. It is shown that equation (1.1) has a solution $x(t)$ such that (1.2) \[ \lim \_\{t\rightarrow \infty \} \frac\{x(t)\}\{t^k\}\ \text\{exists and is a positive finite value if and only if\} \int ^\{\infty \}\_\{t\_0\} t^\{n-k-1\} F(t,c[g(t)]^k)\{\mathrm \{d\}\} t < \infty \text\{ for some \}c > 0. \]
Here, $k$ is an integer with $0\le k \le n-1$. To prove the existence of a solution $x(t)$ satisfying (1.2), the Schauder-Tychonoff fixed point theorem is used.},
author = {Naito, Manabu},
journal = {Czechoslovak Mathematical Journal},
keywords = {neutral differential equation; asymptotic properties},
language = {eng},
number = {3},
pages = {419-432},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An asymptotic theorem for a class of nonlinear neutral differential equations},
url = {http://eudml.org/doc/30430},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Naito, Manabu
TI - An asymptotic theorem for a class of nonlinear neutral differential equations
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 3
SP - 419
EP - 432
AB - The neutral differential equation (1.1) \[ \frac{{\mathrm {d}}^n}{{\mathrm {d}} t^n} [x(t)+x(t-\tau )] + \sigma F(t,x(g(t))) = 0, \]
is considered under the following conditions: $n\ge 2$, $\tau >0$, $\sigma = \pm 1$, $F(t,u)$ is nonnegative on $[t_0, \infty ) \times (0,\infty )$ and is nondecreasing in $u\in (0,\infty )$, and $\lim g(t) = \infty $ as $t\rightarrow \infty $. It is shown that equation (1.1) has a solution $x(t)$ such that (1.2) \[ \lim _{t\rightarrow \infty } \frac{x(t)}{t^k}\ \text{exists and is a positive finite value if and only if} \int ^{\infty }_{t_0} t^{n-k-1} F(t,c[g(t)]^k){\mathrm {d}} t < \infty \text{ for some }c > 0. \]
Here, $k$ is an integer with $0\le k \le n-1$. To prove the existence of a solution $x(t)$ satisfying (1.2), the Schauder-Tychonoff fixed point theorem is used.
LA - eng
KW - neutral differential equation; asymptotic properties
UR - http://eudml.org/doc/30430
ER -
References
top- 10.1002/mana.19911500103, Math. Nachr. 150 (1991), 15–24. (1991) MR1109642DOI10.1002/mana.19911500103
- 10.1016/0362-546X(93)90175-R, Nonlinear Anal. 21 (1993), 23–42. (1993) MR1231526DOI10.1016/0362-546X(93)90175-R
- Oscillation and asymptotic behavior of higher order neutral equations with variable coefficients, Chinese Ann. Math. Ser. B, 9 (1988), 322–338. (1988) MR0968469
- On a class of functional differential equations of neutral type, in “Recent Trends in Differential Equations”, (R. P. Agarwal, Ed.), World Scientific, 1992, pp. 317–333. (1992) MR1180120
- 10.32917/hmj/1206129616, Hiroshima Math. J. 18 (1988), 509–531. (1988) MR0991245DOI10.32917/hmj/1206129616
- Asymptotic behavior of nonoscillatory solutions of nonlinear functional differential equations of neutral type, Funkcial. Ekvac. 32 (1989), 251–263. (1989) MR1019433
- 10.32917/hmj/1206129189, Hiroshima Math. J. 20 (1990), 407–419. (1990) MR1063374DOI10.32917/hmj/1206129189
- Existence of oscillatory solutions for functional differential equations of neutral type, Acta Math. Univ. Comenian. 60 (1991), 185–194. (1991) MR1155243
- 10.32917/hmj/1206127825, Hiroshima Math. J. 25 (1995), 53–82. (1995) MR1322602DOI10.32917/hmj/1206127825
- Existence theorems for nonlinear functional differential equations of neutral type, Proc. Georgian Acad. Sci. Math. 2 (1995), 79–92. (1995) MR1310502
- 10.1016/0022-247X(91)90233-P, J. Math. Anal. Appl. 159 (1991), 237–250. (1991) MR1119433DOI10.1016/0022-247X(91)90233-P
- 10.1017/S0334270000005105, J. Austral. Math. Soc. Ser. B, 27 (1986), 502–511. (1986) MR0836222DOI10.1017/S0334270000005105
- 10.1016/0022-247X(90)90008-4, J. Math. Anal. Appl. 148 (1990), 378–389. (1990) Zbl0704.34081MR1052351DOI10.1016/0022-247X(90)90008-4
- On unbounded nonoscillatory solutions of systems of neutral differential equations, Czechoslovak Math. J. 42 (1992), 117–128. (1992) MR1152175
- 10.32917/hmj/1206129177, Hiroshima Math. J. 20 (1990), 231–258. (1990) Zbl0721.34091MR1063362DOI10.32917/hmj/1206129177
- 10.1006/jmaa.1994.1424, J. Math. Anal. Appl. 188 (1994), 227–244. (1994) Zbl0818.34036MR1301729DOI10.1006/jmaa.1994.1424
- 10.1017/S0334270000005324, J. Austral. Math. Soc. Ser. B, 28 (1986), 229–239. (1986) MR0862572DOI10.1017/S0334270000005324
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.