Existence of positive solutions for a class of higher order neutral functional differential equations

Satoshi Tanaka

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 3, page 573-583
  • ISSN: 0011-4642

Abstract

top
The higher order neutral functional differential equation d n d t n x ( t ) + h ( t ) x ( τ ( t ) ) + σ f t , x ( g ( t ) ) = 0 ( 1 ) is considered under the following conditions: n 2 , σ = ± 1 , τ ( t ) is strictly increasing in t [ t 0 , ) , τ ( t ) < t for t t 0 , lim t τ ( t ) = , lim t g ( t ) = , and f ( t , u ) is nonnegative on [ t 0 , ) × ( 0 , ) and nondecreasing in u ( 0 , ) . A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).

How to cite

top

Tanaka, Satoshi. "Existence of positive solutions for a class of higher order neutral functional differential equations." Czechoslovak Mathematical Journal 51.3 (2001): 573-583. <http://eudml.org/doc/30656>.

@article{Tanaka2001,
abstract = {The higher order neutral functional differential equation \[ \frac\{\mathrm \{d\}^n\}\{\mathrm \{d\}t^n\} \bigl [x(t) + h(t) x(\tau (t))\bigr ] + \sigma f\bigl (t,x(g(t))\bigr ) = 0 \qquad \mathrm \{(1)\}\] is considered under the following conditions: $n\ge 2$, $\sigma =\pm 1$, $\tau (t)$ is strictly increasing in $t\in [t_0,\infty )$, $\tau (t)<t$ for $t\ge t_0$, $\lim _\{t\rightarrow \infty \} \tau (t)= \infty $, $\lim _\{t\rightarrow \infty \} g(t) = \infty $, and $f(t,u)$ is nonnegative on $[t_0,\infty )\times (0,\infty )$ and nondecreasing in $u \in (0,\infty )$. A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).},
author = {Tanaka, Satoshi},
journal = {Czechoslovak Mathematical Journal},
keywords = {neutral differential equation; positive solution; neutral differential equation; positive solution},
language = {eng},
number = {3},
pages = {573-583},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of positive solutions for a class of higher order neutral functional differential equations},
url = {http://eudml.org/doc/30656},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Tanaka, Satoshi
TI - Existence of positive solutions for a class of higher order neutral functional differential equations
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 573
EP - 583
AB - The higher order neutral functional differential equation \[ \frac{\mathrm {d}^n}{\mathrm {d}t^n} \bigl [x(t) + h(t) x(\tau (t))\bigr ] + \sigma f\bigl (t,x(g(t))\bigr ) = 0 \qquad \mathrm {(1)}\] is considered under the following conditions: $n\ge 2$, $\sigma =\pm 1$, $\tau (t)$ is strictly increasing in $t\in [t_0,\infty )$, $\tau (t)<t$ for $t\ge t_0$, $\lim _{t\rightarrow \infty } \tau (t)= \infty $, $\lim _{t\rightarrow \infty } g(t) = \infty $, and $f(t,u)$ is nonnegative on $[t_0,\infty )\times (0,\infty )$ and nondecreasing in $u \in (0,\infty )$. A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).
LA - eng
KW - neutral differential equation; positive solution; neutral differential equation; positive solution
UR - http://eudml.org/doc/30656
ER -

References

top
  1. 10.1017/S1446788700034406, J.  Austral. Math. Soc. Ser.  A 52 (1992), 261–284. (1992) MR1143194DOI10.1017/S1446788700034406
  2. Existence of nonoscillatory solutions of n th order neutral delay differential equations, Funkcial. Ekvac. 35 (1992), 557–570. (1992) Zbl0787.34056MR1199474
  3. 10.32917/hmj/1206127259, Hiroshima Math.  J. 26 (1996), 557–572. (1996) MR1421226DOI10.32917/hmj/1206127259
  4. 10.32917/hmj/1206127260, Hiroshima Math.  J. 26 (1996), 573–585. (1996) MR1421227DOI10.32917/hmj/1206127260
  5. Oscillation and nonoscillation in neutral differential equations with variable parameters, J.  Math. Phys. Sci. 21 (1987), 593–611. (1987) Zbl0655.34058MR0932884
  6. Oscillation of odd order neutral differential equations, Czechoslovak Math.  J. 42 (1992), 313–323. (1992) MR1179502
  7. 10.32917/hmj/1206129616, Hiroshima Math.  J. 18 (1988), 509–531. (1988) MR0991245DOI10.32917/hmj/1206129616
  8. Asymptotic behavior of nonoscillatory solutions of nonlinear functional differential equations of neutral type, Funkcial. Ekvac. 32 (1989), 251–263. (1989) MR1019433
  9. 10.32917/hmj/1206127825, Hiroshima Math.  J. 25 (1995), 53–82. (1995) MR1322602DOI10.32917/hmj/1206127825
  10. Existence and asymptotic behavior of nonoscillatory solutions to nonlinear second-order equations of neutral type, Acta Math. Sinica 36 (1993), 476–484. (Chinese) (1993) MR1248661
  11. 10.1023/A:1022419609784, Czechoslovak Math.  J 48(123) (1998), 419–432. (1998) Zbl0955.34064MR1637902DOI10.1023/A:1022419609784
  12. 10.32917/hmj/1206129177, Hiroshima Math.  J. 20 (1990), 231–258. (1990) Zbl0721.34091MR1063362DOI10.32917/hmj/1206129177
  13. Asymptotic behavior of decaying nonoscillatory solutions of neutral differential equations, Funkcial. Ekvac. 35 (1992), 95–110. (1992) Zbl0771.34054MR1172423
  14. 10.1006/jmaa.1994.1424, J.  Math. Anal. Appl. 188 (1994), 227–244. (1994) Zbl0818.34036MR1301729DOI10.1006/jmaa.1994.1424
  15. 10.32917/hmj/1206127628, Hiroshima Math.  J. 25 (1995), 513–518. (1995) Zbl0849.34057MR1364070DOI10.32917/hmj/1206127628
  16. Type and criteria of nonoscillatory solutions for second order linear neutral differential equations, Chinese Ann. Math. Ser.  A 8 (1987), 114–124. (Chinese) (1987) MR0901645
  17. Existence and asymptotic behavior of solutions of nonlinear neutral differential equations, In preparation. 
  18. 10.1006/jmaa.1998.6176, J.  Math. Anal. Appl. 229 (1999), 501–518. (1999) Zbl0920.34066MR1666428DOI10.1006/jmaa.1998.6176
  19. 10.1006/jmaa.1997.5567, J.  Math. Anal. Appl. 213 (1997), 662–680. (1997) MR1470876DOI10.1006/jmaa.1997.5567
  20. 10.1016/0022-247X(92)90322-5, J.  Math. Anal. Appl. 166 (1992), 1–11. (1992) MR1159633DOI10.1016/0022-247X(92)90322-5
  21. 10.1216/rmjm/1181072302, Rocky Mountain J. Math. 25 (1995), 557–568. (1995) MR1340027DOI10.1216/rmjm/1181072302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.