Existence of positive solutions for a class of higher order neutral functional differential equations
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 3, page 573-583
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTanaka, Satoshi. "Existence of positive solutions for a class of higher order neutral functional differential equations." Czechoslovak Mathematical Journal 51.3 (2001): 573-583. <http://eudml.org/doc/30656>.
@article{Tanaka2001,
abstract = {The higher order neutral functional differential equation \[ \frac\{\mathrm \{d\}^n\}\{\mathrm \{d\}t^n\} \bigl [x(t) + h(t) x(\tau (t))\bigr ] + \sigma f\bigl (t,x(g(t))\bigr ) = 0 \qquad \mathrm \{(1)\}\]
is considered under the following conditions: $n\ge 2$, $\sigma =\pm 1$, $\tau (t)$ is strictly increasing in $t\in [t_0,\infty )$, $\tau (t)<t$ for $t\ge t_0$, $\lim _\{t\rightarrow \infty \} \tau (t)= \infty $, $\lim _\{t\rightarrow \infty \} g(t) = \infty $, and $f(t,u)$ is nonnegative on $[t_0,\infty )\times (0,\infty )$ and nondecreasing in $u \in (0,\infty )$. A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).},
author = {Tanaka, Satoshi},
journal = {Czechoslovak Mathematical Journal},
keywords = {neutral differential equation; positive solution; neutral differential equation; positive solution},
language = {eng},
number = {3},
pages = {573-583},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of positive solutions for a class of higher order neutral functional differential equations},
url = {http://eudml.org/doc/30656},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Tanaka, Satoshi
TI - Existence of positive solutions for a class of higher order neutral functional differential equations
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 573
EP - 583
AB - The higher order neutral functional differential equation \[ \frac{\mathrm {d}^n}{\mathrm {d}t^n} \bigl [x(t) + h(t) x(\tau (t))\bigr ] + \sigma f\bigl (t,x(g(t))\bigr ) = 0 \qquad \mathrm {(1)}\]
is considered under the following conditions: $n\ge 2$, $\sigma =\pm 1$, $\tau (t)$ is strictly increasing in $t\in [t_0,\infty )$, $\tau (t)<t$ for $t\ge t_0$, $\lim _{t\rightarrow \infty } \tau (t)= \infty $, $\lim _{t\rightarrow \infty } g(t) = \infty $, and $f(t,u)$ is nonnegative on $[t_0,\infty )\times (0,\infty )$ and nondecreasing in $u \in (0,\infty )$. A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).
LA - eng
KW - neutral differential equation; positive solution; neutral differential equation; positive solution
UR - http://eudml.org/doc/30656
ER -
References
top- 10.1017/S1446788700034406, J. Austral. Math. Soc. Ser. A 52 (1992), 261–284. (1992) MR1143194DOI10.1017/S1446788700034406
- Existence of nonoscillatory solutions of th order neutral delay differential equations, Funkcial. Ekvac. 35 (1992), 557–570. (1992) Zbl0787.34056MR1199474
- 10.32917/hmj/1206127259, Hiroshima Math. J. 26 (1996), 557–572. (1996) MR1421226DOI10.32917/hmj/1206127259
- 10.32917/hmj/1206127260, Hiroshima Math. J. 26 (1996), 573–585. (1996) MR1421227DOI10.32917/hmj/1206127260
- Oscillation and nonoscillation in neutral differential equations with variable parameters, J. Math. Phys. Sci. 21 (1987), 593–611. (1987) Zbl0655.34058MR0932884
- Oscillation of odd order neutral differential equations, Czechoslovak Math. J. 42 (1992), 313–323. (1992) MR1179502
- 10.32917/hmj/1206129616, Hiroshima Math. J. 18 (1988), 509–531. (1988) MR0991245DOI10.32917/hmj/1206129616
- Asymptotic behavior of nonoscillatory solutions of nonlinear functional differential equations of neutral type, Funkcial. Ekvac. 32 (1989), 251–263. (1989) MR1019433
- 10.32917/hmj/1206127825, Hiroshima Math. J. 25 (1995), 53–82. (1995) MR1322602DOI10.32917/hmj/1206127825
- Existence and asymptotic behavior of nonoscillatory solutions to nonlinear second-order equations of neutral type, Acta Math. Sinica 36 (1993), 476–484. (Chinese) (1993) MR1248661
- 10.1023/A:1022419609784, Czechoslovak Math. J 48(123) (1998), 419–432. (1998) Zbl0955.34064MR1637902DOI10.1023/A:1022419609784
- 10.32917/hmj/1206129177, Hiroshima Math. J. 20 (1990), 231–258. (1990) Zbl0721.34091MR1063362DOI10.32917/hmj/1206129177
- Asymptotic behavior of decaying nonoscillatory solutions of neutral differential equations, Funkcial. Ekvac. 35 (1992), 95–110. (1992) Zbl0771.34054MR1172423
- 10.1006/jmaa.1994.1424, J. Math. Anal. Appl. 188 (1994), 227–244. (1994) Zbl0818.34036MR1301729DOI10.1006/jmaa.1994.1424
- 10.32917/hmj/1206127628, Hiroshima Math. J. 25 (1995), 513–518. (1995) Zbl0849.34057MR1364070DOI10.32917/hmj/1206127628
- Type and criteria of nonoscillatory solutions for second order linear neutral differential equations, Chinese Ann. Math. Ser. A 8 (1987), 114–124. (Chinese) (1987) MR0901645
- Existence and asymptotic behavior of solutions of nonlinear neutral differential equations, In preparation.
- 10.1006/jmaa.1998.6176, J. Math. Anal. Appl. 229 (1999), 501–518. (1999) Zbl0920.34066MR1666428DOI10.1006/jmaa.1998.6176
- 10.1006/jmaa.1997.5567, J. Math. Anal. Appl. 213 (1997), 662–680. (1997) MR1470876DOI10.1006/jmaa.1997.5567
- 10.1016/0022-247X(92)90322-5, J. Math. Anal. Appl. 166 (1992), 1–11. (1992) MR1159633DOI10.1016/0022-247X(92)90322-5
- 10.1216/rmjm/1181072302, Rocky Mountain J. Math. 25 (1995), 557–568. (1995) MR1340027DOI10.1216/rmjm/1181072302
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.