On the Neumann-Poincaré operator
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 4, page 653-668
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKrál, Josef, and Medková, Dagmar. "On the Neumann-Poincaré operator." Czechoslovak Mathematical Journal 48.4 (1998): 653-668. <http://eudml.org/doc/30444>.
@article{Král1998,
abstract = {Let $\Gamma $ be a rectifiable Jordan curve in the finite complex plane $\mathbb \{C\}$ which is regular in the sense of Ahlfors and David. Denote by $L^2_C (\Gamma )$ the space of all complex-valued functions on $\Gamma $ which are square integrable w.r. to the arc-length on $\Gamma $. Let $L^2(\Gamma )$ stand for the space of all real-valued functions in $L^2_C (\Gamma )$ and put \[ L^2\_0 (\Gamma ) = \lbrace h \in L^2 (\Gamma )\; \int \_\{\Gamma \} h(\zeta ) |\mathrm \{d\}\zeta | =0\rbrace . \]
Since the Cauchy singular operator is bounded on $L^2_C (\Gamma )$, the Neumann-Poincaré operator $C_1^\{\Gamma \}$ sending each $h \in L^2 (\Gamma )$ into \[ C\_1^\{\Gamma \} h(\zeta \_0) := \Re (\pi \mathrm \{i\})^\{-1\} \mathop \{\mathrm \{P\}. V.\}\int \_\{\Gamma \} \frac\{h(\zeta )\}\{\zeta -\zeta \_0\} \mathrm \{d\}\zeta , \quad \zeta \_0 \in \Gamma , \]
is bounded on $L^2(\Gamma )$. We show that the inclusion \[ C\_1^\{\Gamma \} (L^2\_0 (\Gamma )) \subset L^2\_0 (\Gamma ) \]
characterizes the circle in the class of all $AD$-regular Jordan curves $\Gamma $.},
author = {Král, Josef, Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cauchy’s singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David; Cauchy's singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David},
language = {eng},
number = {4},
pages = {653-668},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Neumann-Poincaré operator},
url = {http://eudml.org/doc/30444},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Král, Josef
AU - Medková, Dagmar
TI - On the Neumann-Poincaré operator
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 4
SP - 653
EP - 668
AB - Let $\Gamma $ be a rectifiable Jordan curve in the finite complex plane $\mathbb {C}$ which is regular in the sense of Ahlfors and David. Denote by $L^2_C (\Gamma )$ the space of all complex-valued functions on $\Gamma $ which are square integrable w.r. to the arc-length on $\Gamma $. Let $L^2(\Gamma )$ stand for the space of all real-valued functions in $L^2_C (\Gamma )$ and put \[ L^2_0 (\Gamma ) = \lbrace h \in L^2 (\Gamma )\; \int _{\Gamma } h(\zeta ) |\mathrm {d}\zeta | =0\rbrace . \]
Since the Cauchy singular operator is bounded on $L^2_C (\Gamma )$, the Neumann-Poincaré operator $C_1^{\Gamma }$ sending each $h \in L^2 (\Gamma )$ into \[ C_1^{\Gamma } h(\zeta _0) := \Re (\pi \mathrm {i})^{-1} \mathop {\mathrm {P}. V.}\int _{\Gamma } \frac{h(\zeta )}{\zeta -\zeta _0} \mathrm {d}\zeta , \quad \zeta _0 \in \Gamma , \]
is bounded on $L^2(\Gamma )$. We show that the inclusion \[ C_1^{\Gamma } (L^2_0 (\Gamma )) \subset L^2_0 (\Gamma ) \]
characterizes the circle in the class of all $AD$-regular Jordan curves $\Gamma $.
LA - eng
KW - Cauchy’s singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David; Cauchy's singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David
UR - http://eudml.org/doc/30444
ER -
References
top- 10.1137/1002039, SIAM Rev. 2 (1960), 177–184. (1960) Zbl0094.08005MR0143926DOI10.1137/1002039
- 10.24033/asens.1469, Ann. Scient. Éc. Nor. Sup. 17 (1984), 157–189. (1984) MR0744071DOI10.24033/asens.1469
- Theory of spaces, Academic Press, 1970. (1970) MR0268655
- 10.1007/BF01164277, Math. Z. 147 (1976), 113–129. (1976) MR0396926DOI10.1007/BF01164277
- Teorie potenciálu II, Státní ped. nakl., Praha, 1972. (1972)
- Some remarks concerning the Cauchy operator on AD-regular curves, Annales Un. Mariae Curie-Skłodowska XLII, 7 (1988), 53–58. (1988) Zbl0716.30034MR1074844
- Generalized Neumann–Poincaré operator and chord-arc curves, Annales Un. Mariae Curie-Skłodowska XLIII, 7 (1989), 69–78. (1989) Zbl0736.30028MR1158099
- Chord-arc curves and generalized Neumann-Poincaré operator , “Linear and Complex Analysis Problem Book 3”, Lecture Notes in Math. 1579, V. P. Havin and N. K. Nikolski (eds.), 1994, p. 418. (1994)
- Eine Integralgleichung für die logarithmische Gleichgewichtsbelegung und die Krümmung der Randkurve eines ebenen Gebiets, Z. angew. Math.-Mech. 72 (6) (1992), T596–T599. (1992) MR1178329
- Boundary behaviour of conformal maps, Springer-Verlag, 1992. (1992) Zbl0762.30001MR1217706
- Randeigenschaften analytischer Funktionen, Translated from Russian, Deutscher Verlag der Wissenschaften, Berlin, 1956. (1956) Zbl0073.06501MR0083565
- Theory of the integral, Dover Publications, New York, 1964. (1964) MR0167578
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.