On the Neumann-Poincaré operator

Josef Král; Dagmar Medková

Czechoslovak Mathematical Journal (1998)

  • Volume: 48, Issue: 4, page 653-668
  • ISSN: 0011-4642

Abstract

top
Let Γ be a rectifiable Jordan curve in the finite complex plane which is regular in the sense of Ahlfors and David. Denote by L C 2 ( Γ ) the space of all complex-valued functions on Γ which are square integrable w.r. to the arc-length on Γ . Let L 2 ( Γ ) stand for the space of all real-valued functions in L C 2 ( Γ ) and put L 0 2 ( Γ ) = { h L 2 ( Γ ) Γ h ( ζ ) | d ζ | = 0 } . Since the Cauchy singular operator is bounded on L C 2 ( Γ ) , the Neumann-Poincaré operator C 1 Γ sending each h L 2 ( Γ ) into C 1 Γ h ( ζ 0 ) : = ( π i ) - 1 P . V . Γ h ( ζ ) ζ - ζ 0 d ζ , ζ 0 Γ , is bounded on L 2 ( Γ ) . We show that the inclusion C 1 Γ ( L 0 2 ( Γ ) ) L 0 2 ( Γ ) characterizes the circle in the class of all A D -regular Jordan curves Γ .

How to cite

top

Král, Josef, and Medková, Dagmar. "On the Neumann-Poincaré operator." Czechoslovak Mathematical Journal 48.4 (1998): 653-668. <http://eudml.org/doc/30444>.

@article{Král1998,
abstract = {Let $\Gamma $ be a rectifiable Jordan curve in the finite complex plane $\mathbb \{C\}$ which is regular in the sense of Ahlfors and David. Denote by $L^2_C (\Gamma )$ the space of all complex-valued functions on $\Gamma $ which are square integrable w.r. to the arc-length on $\Gamma $. Let $L^2(\Gamma )$ stand for the space of all real-valued functions in $L^2_C (\Gamma )$ and put \[ L^2\_0 (\Gamma ) = \lbrace h \in L^2 (\Gamma )\; \int \_\{\Gamma \} h(\zeta ) |\mathrm \{d\}\zeta | =0\rbrace . \] Since the Cauchy singular operator is bounded on $L^2_C (\Gamma )$, the Neumann-Poincaré operator $C_1^\{\Gamma \}$ sending each $h \in L^2 (\Gamma )$ into \[ C\_1^\{\Gamma \} h(\zeta \_0) := \Re (\pi \mathrm \{i\})^\{-1\} \mathop \{\mathrm \{P\}. V.\}\int \_\{\Gamma \} \frac\{h(\zeta )\}\{\zeta -\zeta \_0\} \mathrm \{d\}\zeta , \quad \zeta \_0 \in \Gamma , \] is bounded on $L^2(\Gamma )$. We show that the inclusion \[ C\_1^\{\Gamma \} (L^2\_0 (\Gamma )) \subset L^2\_0 (\Gamma ) \] characterizes the circle in the class of all $AD$-regular Jordan curves $\Gamma $.},
author = {Král, Josef, Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cauchy’s singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David; Cauchy's singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David},
language = {eng},
number = {4},
pages = {653-668},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Neumann-Poincaré operator},
url = {http://eudml.org/doc/30444},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Král, Josef
AU - Medková, Dagmar
TI - On the Neumann-Poincaré operator
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 4
SP - 653
EP - 668
AB - Let $\Gamma $ be a rectifiable Jordan curve in the finite complex plane $\mathbb {C}$ which is regular in the sense of Ahlfors and David. Denote by $L^2_C (\Gamma )$ the space of all complex-valued functions on $\Gamma $ which are square integrable w.r. to the arc-length on $\Gamma $. Let $L^2(\Gamma )$ stand for the space of all real-valued functions in $L^2_C (\Gamma )$ and put \[ L^2_0 (\Gamma ) = \lbrace h \in L^2 (\Gamma )\; \int _{\Gamma } h(\zeta ) |\mathrm {d}\zeta | =0\rbrace . \] Since the Cauchy singular operator is bounded on $L^2_C (\Gamma )$, the Neumann-Poincaré operator $C_1^{\Gamma }$ sending each $h \in L^2 (\Gamma )$ into \[ C_1^{\Gamma } h(\zeta _0) := \Re (\pi \mathrm {i})^{-1} \mathop {\mathrm {P}. V.}\int _{\Gamma } \frac{h(\zeta )}{\zeta -\zeta _0} \mathrm {d}\zeta , \quad \zeta _0 \in \Gamma , \] is bounded on $L^2(\Gamma )$. We show that the inclusion \[ C_1^{\Gamma } (L^2_0 (\Gamma )) \subset L^2_0 (\Gamma ) \] characterizes the circle in the class of all $AD$-regular Jordan curves $\Gamma $.
LA - eng
KW - Cauchy’s singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David; Cauchy's singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David
UR - http://eudml.org/doc/30444
ER -

References

top
  1. 10.1137/1002039, SIAM Rev. 2 (1960), 177–184. (1960) Zbl0094.08005MR0143926DOI10.1137/1002039
  2. 10.24033/asens.1469, Ann. Scient. Éc. Nor. Sup. 17 (1984), 157–189. (1984) MR0744071DOI10.24033/asens.1469
  3. Theory of H p spaces, Academic Press, 1970. (1970) MR0268655
  4. 10.1007/BF01164277, Math. Z. 147 (1976), 113–129. (1976) MR0396926DOI10.1007/BF01164277
  5. Teorie potenciálu II, Státní ped. nakl., Praha, 1972. (1972) 
  6. Some remarks concerning the Cauchy operator on AD-regular curves, Annales Un. Mariae Curie-Skłodowska XLII, 7 (1988), 53–58. (1988) Zbl0716.30034MR1074844
  7. Generalized Neumann–Poincaré operator and chord-arc curves, Annales Un. Mariae Curie-Skłodowska XLIII, 7 (1989), 69–78. (1989) Zbl0736.30028MR1158099
  8. Chord-arc curves and generalized Neumann-Poincaré operator C 1 Γ , “Linear and Complex Analysis Problem Book 3”, Lecture Notes in Math. 1579, V. P. Havin and N. K. Nikolski (eds.), 1994, p. 418. (1994) 
  9. Eine Integralgleichung für die logarithmische Gleichgewichtsbelegung und die Krümmung der Randkurve eines ebenen Gebiets, Z. angew. Math.-Mech. 72 (6) (1992), T596–T599. (1992) MR1178329
  10. Boundary behaviour of conformal maps, Springer-Verlag, 1992. (1992) Zbl0762.30001MR1217706
  11. Randeigenschaften analytischer Funktionen, Translated from Russian, Deutscher Verlag der Wissenschaften, Berlin, 1956. (1956) Zbl0073.06501MR0083565
  12. Theory of the integral, Dover Publications, New York, 1964. (1964) MR0167578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.