Opérateurs intégraux singuliers sur certaines courbes du plan complexe

Guy David

Annales scientifiques de l'École Normale Supérieure (1984)

  • Volume: 17, Issue: 1, page 157-189
  • ISSN: 0012-9593

How to cite

top

David, Guy. "Opérateurs intégraux singuliers sur certaines courbes du plan complexe." Annales scientifiques de l'École Normale Supérieure 17.1 (1984): 157-189. <http://eudml.org/doc/82133>.

@article{David1984,
author = {David, Guy},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Cauchy integral operator; regular curves; Hardy spaces; Coifman-McIntosh- Meyer theorem},
language = {fre},
number = {1},
pages = {157-189},
publisher = {Elsevier},
title = {Opérateurs intégraux singuliers sur certaines courbes du plan complexe},
url = {http://eudml.org/doc/82133},
volume = {17},
year = {1984},
}

TY - JOUR
AU - David, Guy
TI - Opérateurs intégraux singuliers sur certaines courbes du plan complexe
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1984
PB - Elsevier
VL - 17
IS - 1
SP - 157
EP - 189
LA - fre
KW - Cauchy integral operator; regular curves; Hardy spaces; Coifman-McIntosh- Meyer theorem
UR - http://eudml.org/doc/82133
ER -

References

top
  1. [1] A. P. CALDERÓNCauchy integral on Lipschitz curves and related operators. (Proc. Nat. Acad. Sc., vol. 74, n° 4, 1977, p. 1324-1327). Zbl0373.44003MR57 #6445
  2. [2] A. P. CALDERÓN, Commutators, singular integrals on Lipschitz curves and applications. (Proc. I.C.M. Helsinski, 1978, p. 85-96). Zbl0429.35077MR82f:42016
  3. [3] R. R. COIFMAN, Y. MEYER, Au-delà des opérateurs pseudodifférentiels. (Astérisque 57, Soc. Math. France, 1978). Zbl0483.35082MR81b:47061
  4. [4] R. R. COIFMAN, Y. MEYER, Le théorème de Caldéron par les méthodes de variable réelle. (C. R. Acad. Sc., Paris, vol. 289, 1979, p. 425-428). Zbl0427.42007MR80j:42024
  5. [5] R. R. COIFMAN, A. MCINTOSH, Y. MEYER, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes. (Ann. of Math., vol. 116, 1982, p. 361-387). Zbl0497.42012MR84m:42027
  6. [6] R. R. COIFMAN, G. DAVID, Y. MEYER, La solution des conjectures de Calderón. (Advances in Math., vol. 48, n° 2, 1983, p. 144-148). Zbl0518.42024MR84i:42025
  7. [7] M. DE GUZMAN, Differentiation of integrals in ℝn. (Lecture Notes in Math., p. 481). Zbl0327.26010MR56 #15866
  8. [8] P. DUREN, Theory of Hp spaces. (Academic Press, 1970). Zbl0215.20203MR42 #3552
  9. [9] T. W. GAMELIN, Uniform Algebras. (Prentice-Hall Inc., 1969). Zbl0213.40401MR53 #14137
  10. [10] M. V. KELDYSH, M. A. LAVRENTIEV, Sur la représentation conforme des domaines limités par des courbes rectifiables. (Ann. Sci. École Norm. Sup., vol. 54, 1937, p. 1-38). Zbl0017.21702JFM63.0299.04
  11. [11] Y. MEYER, Communication orale. 
  12. [12] E. M. STEIN, Singular integrals and differentiability properties of functions. (Princeton, 1970). Zbl0207.13501MR44 #7280
  13. [13] H. STEINHAUS, Mathématiques en instantanés. Flammarion. 
  14. [14] A. ZYGMUND, Trigonometric series (Cambridge University Press, 1968). MR38 #4882

Citations in EuDML Documents

top
  1. Guy David, Opérateurs d'intégrale singulière sur les surfaces régulières
  2. Daniyal M. Israfilov, Approximation by p -Faber-Laurent rational functions in the weighted Lebesgue spaces
  3. Josef Král, Dagmar Medková, On the Neumann-Poincaré operator
  4. KARI Astala, Michel Zinsmeister, Rectifiability in Teichmüller theory
  5. Garth Gaudry, Tao Qian, Silei Wang, Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves
  6. Tao Qian, Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves
  7. Lev Aizenberg, Alexander Tumanov, Alekos Vidras, The class of holomorphic functions representable by Carleman formula

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.