L p -discrepancy and statistical independence of sequences

Peter J. Grabner; Oto Strauch; Robert Franz Tichy

Czechoslovak Mathematical Journal (1999)

  • Volume: 49, Issue: 1, page 97-110
  • ISSN: 0011-4642

Abstract

top
We characterize statistical independence of sequences by the L p -discrepancy and the Wiener L p -discrepancy. Furthermore, we find asymptotic information on the distribution of the L 2 -discrepancy of sequences.

How to cite

top

Grabner, Peter J., Strauch, Oto, and Tichy, Robert Franz. "$L^p$-discrepancy and statistical independence of sequences." Czechoslovak Mathematical Journal 49.1 (1999): 97-110. <http://eudml.org/doc/30468>.

@article{Grabner1999,
abstract = {We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences.},
author = {Grabner, Peter J., Strauch, Oto, Tichy, Robert Franz},
journal = {Czechoslovak Mathematical Journal},
keywords = {sequences; statistical independence; discrepancy; distribution functions; sequences; statistical independence; discrepancy; distribution functions},
language = {eng},
number = {1},
pages = {97-110},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L^p$-discrepancy and statistical independence of sequences},
url = {http://eudml.org/doc/30468},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Grabner, Peter J.
AU - Strauch, Oto
AU - Tichy, Robert Franz
TI - $L^p$-discrepancy and statistical independence of sequences
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 1
SP - 97
EP - 110
AB - We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences.
LA - eng
KW - sequences; statistical independence; discrepancy; distribution functions; sequences; statistical independence; discrepancy; distribution functions
UR - http://eudml.org/doc/30468
ER -

References

top
  1. 10.1090/S0002-9904-1945-08275-5, Bull. Amer. Math. Soc. 51 (1945), 73–90. (1945) MR0011401DOI10.1090/S0002-9904-1945-08275-5
  2. Handbuch über die Laplace Transformation, II, Birkhäuser Verlag, Basel, 1955. (1955) MR0079138
  3. 10.1214/aoms/1177729445, Ann. Math. Stat. 23 (1952), 277–281. (1952) Zbl0046.35103MR0047288DOI10.1214/aoms/1177729445
  4. 10.1214/aoms/1177729991, Ann. Math. Stat. 20 (1949), 393–403. (1949) Zbl0035.08901MR0030732DOI10.1214/aoms/1177729991
  5. Remarks on statistical independence of sequences, Math. Slovaca 44 (1994), 91–94. (1994) MR1290276
  6. Maldistribution in higher dimensions, Mathematica Pannonica 8 (1997), 215–223. (1997) MR1476099
  7. Probability and related topics in physical sciences, Lectures in Applied Math., Proceedings of a Summer Seminar in Boulder, Col. 1957, Interscience Publishers, London, New York, 1959. (1959) Zbl0087.33003MR0102849
  8. Sulla determinazione empirica di una legge di distribuzione, Giorn. Ist. Ital. Attuari 4 (1933), 83–91. (1933) Zbl0006.17402
  9. Uniform Distribution of Sequences, John Wiley & Sons, New York, 1974. (1974) MR0419394
  10. Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin, Heidelberg, New York, 1966. (1966) MR0232968
  11. Propriétés statistiques de suites arithmétiques, Le Mathématicien, No. 15, Collection SUP, Presses Universitaires de France, Paris, 1976. (1976) Zbl0337.10036MR0409397
  12. 10.1090/S0002-9947-1954-0066539-2, Trans. Amer. Math. Soc. 77 (1954), 299–321. (1954) Zbl0058.32901MR0066539DOI10.1090/S0002-9947-1954-0066539-2
  13. L 2 discrepancy, Math. Slovaca 44 (1994), 601–632. (1994) MR1338433
  14. On the set of all distribution functions of a sequence, Proceedings of the conference on analytic and elementary number theory: a satellite conference of the European Congress on Mathematics ’96, Vienna, July 18–20, 1996. Dedicated to the honour of the 80th birthday of E. Hlawka, W. G. Nowak et al. (eds.), Universität Wien, 1996, pp. 214–229. (1996) 
  15. Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford University Press, 1946. (1946) Zbl0061.13505MR0019765
  16. 10.1002/mana.3211860118, Math. Nachrichten 186 (1997) (to appear), 303–312. (ARRAY(0xa8d23f0)) MR1461227DOI10.1002/mana.3211860118

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.