Geometric properties of a sequence of standard minimal immersions between spheres

Ida Cattaneo Gasparini

Czechoslovak Mathematical Journal (1999)

  • Volume: 49, Issue: 2, page 401-414
  • ISSN: 0011-4642

How to cite

top

Gasparini, Ida Cattaneo. "Geometric properties of a sequence of standard minimal immersions between spheres." Czechoslovak Mathematical Journal 49.2 (1999): 401-414. <http://eudml.org/doc/30493>.

@article{Gasparini1999,
author = {Gasparini, Ida Cattaneo},
journal = {Czechoslovak Mathematical Journal},
keywords = {standard minimal immersion; helical geodesic immersion; Laplacian},
language = {eng},
number = {2},
pages = {401-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Geometric properties of a sequence of standard minimal immersions between spheres},
url = {http://eudml.org/doc/30493},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Gasparini, Ida Cattaneo
TI - Geometric properties of a sequence of standard minimal immersions between spheres
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 2
SP - 401
EP - 414
LA - eng
KW - standard minimal immersion; helical geodesic immersion; Laplacian
UR - http://eudml.org/doc/30493
ER -

References

top
  1. Le spèctre d’une variètè Riemannienne, Lecture Notes in Math. 194, Springer-Verlag, 1971. (1971) MR0282313
  2. Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 93, Springer-Verlag, 1978. (1978) Zbl0387.53010MR0496885
  3. Some remarks on the second variation formula for the area, Annals of Global Analysis and Geometry 11 (1993), 221–235. (1993) Zbl0818.53078MR1237455
  4. 10.4310/jdg/1214427884, J. Differential Geom. 1 (1967), 111–125. (1967) Zbl0171.20504MR0233294DOI10.4310/jdg/1214427884
  5. Immersions with parallel higher fundamental forms, Beiträge zur Algebra und Geometrie 37 (1996), 75–86. (1996) MR1407807
  6. Submanifolds with conformal second fundamental form and isotropic immersions, Rivista di Matematica Univ. Parma (1993). (1993) MR1230604
  7. On minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Analysis and Related Fields, Springer, New-York, 1970, pp. 59–75. (1970) MR0273546
  8. Geometry of Submanifolds, Marcel Decker, 1973. (1973) Zbl0262.53036MR0353212
  9. 10.1017/S0308210500024252, Proc. Roy. Soc. Edinburg, Sect. A 114 (1990), 39–55. (1990) MR1051606DOI10.1017/S0308210500024252
  10. 10.4310/jdg/1214429278, J. Differential Geom. 4 (1970), 91–104. (1970) MR0266104DOI10.4310/jdg/1214429278
  11. 10.2307/1970752, Ann. of Math. (2) 93 (1971), 43–62. (1971) MR0278318DOI10.2307/1970752
  12. 10.1007/BF02566512, Comment. Math. Helvetici 67 (1992), 428–438. (1992) DOI10.1007/BF02566512
  13. Harmonic maps and minimal immersions with symmetries, Ann. of Math. Studies 130 (1993), Princeton Univ. Press. (1993) MR1242555
  14. 10.2307/2373037, American J. Math. 86 (1964), 109–160. (1964) MR0164306DOI10.2307/2373037
  15. 10.1073/pnas.56.1.5, Proc. Nat. Acad. Sci. USA 56 (1966), 5–6. (1966) MR0205203DOI10.1073/pnas.56.1.5
  16. Foundations of Differential Geometry, Vol. I and II, Interscience, New York, 1963 and 1969. (1963 and 1969) MR0152974
  17. Generalized symmetric spaces, Lecture Notes in Math. 805, Springer-Verlag, 1980. (1980) Zbl0431.53042MR0579184
  18. Lectures on minimal submanifolds, Vol I., Publish or Perisch, Univ. of California, Berkeley, 1980. (1980) Zbl0434.53006MR0576752
  19. Gèomètrie des groupes de transformations, Dunod, Paris, 1958. (1958) Zbl0096.16001MR0124009
  20. 10.1007/BF01456411, Math. Ann. 261 (1982), 63–80. (1982) MR0675208DOI10.1007/BF01456411
  21. 10.2307/1970556, Ann. of Math. 88 (1968), 62–105. (1968) Zbl0181.49702MR0233295DOI10.2307/1970556
  22. A comprehensive introduction to differential geometry, Publish or Perish, (1979). (1979) Zbl0439.53005
  23. 10.2969/jmsj/01840380, J. Math. Soc. Japan 18 (1966), 380–385. (1966) MR0198393DOI10.2969/jmsj/01840380
  24. Isoparametric submanifold and their buildings, Ann. Math. 133 (1991), 493–498. (1991) MR1097244
  25. Harmonic and Minimal Maps with Applications in Geometry and Physics, Ellis Horwood Series, 1984. (1984) Zbl0545.58003MR0770205
  26. 10.2969/jmsj/03520355, J. Math. Soc. Japan 35 (1983), 355–379. (1983) Zbl0583.53050MR0692333DOI10.2969/jmsj/03520355
  27. Special Functions and the Theory of Groups Representation, Transl. Math. Monograph, Vol. 22, American Math. Soc. Providence, 1968. (1968) MR0229863
  28. 10.4310/jdg/1214429276, J. Diff. Geom. 4 (1970), 73–79. (1970) Zbl0194.52901MR0262984DOI10.4310/jdg/1214429276
  29. Global Riemannian Geometry, Ellis Horwood Series, 1989. (1989) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.