Locally symmetric immersions
José Carmelo González-Dávila; Lieven Vanhecke
Czechoslovak Mathematical Journal (1999)
- Volume: 49, Issue: 3, page 491-506
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGonzález-Dávila, José Carmelo, and Vanhecke, Lieven. "Locally symmetric immersions." Czechoslovak Mathematical Journal 49.3 (1999): 491-506. <http://eudml.org/doc/30501>.
@article{González1999,
abstract = {We use reflections with respect to submanifolds and related geometric results to develop, inspired by the work of Ferus and other authors, in a unified way a local theory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian manifold and in locally symmetric spaces. In particular we treat the case of real and complex space forms and study additional relations with holomorphic and symplectic reflections when the ambient space is almost Hermitian. The global case is also taken into consideration and several examples are given.},
author = {González-Dávila, José Carmelo, Vanhecke, Lieven},
journal = {Czechoslovak Mathematical Journal},
keywords = {reflections; (locally) symmetric immersions; extrinsic (locally) symmetric submanifolds; parallel immersions; (locally) symmetric spaces; reflections; (locally) symmetric immersions; extrinsic (locally) symmetric submanifolds; parallel immersions; (locally) symmetric spaces},
language = {eng},
number = {3},
pages = {491-506},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally symmetric immersions},
url = {http://eudml.org/doc/30501},
volume = {49},
year = {1999},
}
TY - JOUR
AU - González-Dávila, José Carmelo
AU - Vanhecke, Lieven
TI - Locally symmetric immersions
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 3
SP - 491
EP - 506
AB - We use reflections with respect to submanifolds and related geometric results to develop, inspired by the work of Ferus and other authors, in a unified way a local theory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian manifold and in locally symmetric spaces. In particular we treat the case of real and complex space forms and study additional relations with holomorphic and symplectic reflections when the ambient space is almost Hermitian. The global case is also taken into consideration and several examples are given.
LA - eng
KW - reflections; (locally) symmetric immersions; extrinsic (locally) symmetric submanifolds; parallel immersions; (locally) symmetric spaces; reflections; (locally) symmetric immersions; extrinsic (locally) symmetric submanifolds; parallel immersions; (locally) symmetric spaces
UR - http://eudml.org/doc/30501
ER -
References
top- 10.1007/BF01457052, Math. Ann. 263 (1983), 419–433. (1983) MR0707240DOI10.1007/BF01457052
- Geometry of submanifolds, Pure and Appl. Math. 22, Marcel Dekker, New York, 1973. (1973) Zbl0262.53036MR0353212
- 10.1090/S0002-9947-1974-0346708-7, Trans. Amer. Math. Soc. 193 (1974), 257–266. (1974) MR0346708DOI10.1090/S0002-9947-1974-0346708-7
- 10.1007/BF00572443, Geom. Dedicata 29 (1989), 259–277. (1989) MR0995302DOI10.1007/BF00572443
- 10.1007/BF01359868, Math. Ann. 247 (1980), 81–93. (1980) Zbl0446.53041MR0565140DOI10.1007/BF01359868
- Foundations of differential geometry, I, II, Interscience Publ., New York, 1963, 1969. (1963, 1969) MR0152974
- 10.4153/CJM-1974-138-5, Canad. J. Math. 26 (1974), 1442–1449. (1974) Zbl0297.53013MR0380658DOI10.4153/CJM-1974-138-5
- Geodesic spheres and a new recursion formula on Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 45 (1987), 119–132. (1987) MR0981158
- Isotropic submanifolds with parallel second fundamental forms in symmetric spaces, Osaka J. Math. 17 (1980), 95–110. (1980) Zbl0427.53022MR0558321
- 10.3836/tjm/1270215155, Tokyo J. Math. 4 (1981), 279–306. (1981) MR0646040DOI10.3836/tjm/1270215155
- 10.1017/S0027763000020365, Nagoya Math. J. 90 (1983), 85–117. (1983) Zbl0509.53046MR0702254DOI10.1017/S0027763000020365
- Symmetric submanifolds of compact symmetric spaces, Differential Geometry of Submanifolds, Proceedings, Kyoto 1984, K. Kenmotsu (ed.), Lecture Notes in Math. 1090, Springer-Verlag, Berlin, Heidelberg, New York, 1984, pp. 116–128. (1984) Zbl0546.53034MR0775150
- Totally real submanifolds and symmetric bounded domains, Osaka J. Math. 19 (1982), 717–731. (1982) MR0687769
- 10.2969/jmsj/02840638, J. Math. Soc. Japan 28 (1976), 638–667. (1976) MR0417463DOI10.2969/jmsj/02840638
- Rotations on a Riemannian manifold, Proc. Workshop on Recent Topics in Differential Geometry, Puerto de La Cruz 1990, D. Chinea and J. M. Sierra (eds.), Secret. Public. Univ. de La Laguna, Serie Informes 32, 1991, pp. 89–101. (1991) MR1127455
- 10.4310/jdg/1214431649, J. Differential Geom. 8 (1973), 335–339. (1973) Zbl0279.53031MR0380690DOI10.4310/jdg/1214431649
- 10.1093/qmath/37.1.95, Quart. J. Math. Oxford 37 (1986), 95–103. (1986) MR0830633DOI10.1093/qmath/37.1.95
- 10.1007/BF01420428, Math. Ann. 245 (1979), 37–44. (1979) MR0552577DOI10.1007/BF01420428
- Parallel submanifolds of space forms, Manifolds and Lie groups, Papers in honor of Yozô Matsushima eds J. Hano, A. Morimoto, S. Murakami, K. Okamoto, H. Ozeki, Progress in Math., Birkhäuser, Boston, Basel, Stuttgart, 1981, pp. 429–447. (1981) Zbl0481.53047MR0642871
- 10.1007/BF00147801, Geom. Dedicata 28 (1988), 77–85. (1988) MR0965832DOI10.1007/BF00147801
- 10.1007/BF01159170, Math. Z. 190 (1985), 129–150. (1985) Zbl0568.53031MR0793355DOI10.1007/BF01159170
- Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al vol. 58 (1988), 73–176. (1988) MR1122858
- 10.1007/BF01457081, Math. Ann. 263 (1983), 31–42. (1983) MR0697328DOI10.1007/BF01457081
- 10.2307/1969627, Ann. of Math. 61 (1955), 170–189. (1955) MR0068291DOI10.2307/1969627
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.