On harmonic conjugates with exponential mean growth

Miroslav Pavlović

Czechoslovak Mathematical Journal (1999)

  • Volume: 49, Issue: 4, page 733-742
  • ISSN: 0011-4642

How to cite

top

Pavlović, Miroslav. "On harmonic conjugates with exponential mean growth." Czechoslovak Mathematical Journal 49.4 (1999): 733-742. <http://eudml.org/doc/30519>.

@article{Pavlović1999,
author = {Pavlović, Miroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hardy space; conjugate harmonic function; bounded analytic projection},
language = {eng},
number = {4},
pages = {733-742},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On harmonic conjugates with exponential mean growth},
url = {http://eudml.org/doc/30519},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Pavlović, Miroslav
TI - On harmonic conjugates with exponential mean growth
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 4
SP - 733
EP - 742
LA - eng
KW - Hardy space; conjugate harmonic function; bounded analytic projection
UR - http://eudml.org/doc/30519
ER -

References

top
  1. Éléments de mathématique, Fonctions d’une variable réelle, Hermann, Paris, 1949. (1949) 
  2. 10.1007/BF02392215, Acta Math. 129 (1972), 137–193. (1972) MR0447953DOI10.1007/BF02392215
  3. Some properties of conjugate functions, J. Reine Angew. Math. 167 (1931), 405–423. (1931) 
  4. 10.1090/S0002-9939-1986-0848872-3, Proc. Amer. Math. Soc. 98 (1986), 41–45. (1986) MR0848872DOI10.1090/S0002-9939-1986-0848872-3
  5. Multipliers of H p and BMOA, Pacific J. Math. 146 (1990), 71–84. (1990) MR1073520
  6. 10.1080/17476938808814287, Complex Variables 10 (1988), 53–65. (1988) MR0946099DOI10.1080/17476938808814287
  7. On subharmonic behaviour and oscillation of functions on balls in R n , Publ. Inst. Math. (Belgrade) 55 (1994), 18–22. (1994) MR1324970
  8. Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256–279. (1978) MR0487415
  9. 10.1307/mmj/1029002611, Mich. Math. J. 29 (1982), 3–25. (1982) MR0646368DOI10.1307/mmj/1029002611

NotesEmbed ?

top

You must be logged in to post comments.