The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 1, page 15-24
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSingh, Bhagat. "The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations." Czechoslovak Mathematical Journal 50.1 (2000): 15-24. <http://eudml.org/doc/30536>.
@article{Singh2000,
abstract = {Necessary and sufficient conditions have been found to force all solutions of the equation \[ (r(t)y^\{\prime \}(t))^\{(n-1)\} + a(t)h(y(g(t))) = f(t), \]
to behave in peculiar ways. These results are then extended to the elliptic equation \[ |x|^\{p-1\} \Delta y(|x|) + a(|x|)h(y(g(|x|))) = f(|x|) \]
where $ \Delta $ is the Laplace operator and $p \ge 3$ is an integer.},
author = {Singh, Bhagat},
journal = {Czechoslovak Mathematical Journal},
keywords = {oscillatory; nonoscillatory; exterior domain; elliptic; functional equation; oscillatory; nonoscillatory; exterior domain; elliptic; functional equation},
language = {eng},
number = {1},
pages = {15-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations},
url = {http://eudml.org/doc/30536},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Singh, Bhagat
TI - The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 15
EP - 24
AB - Necessary and sufficient conditions have been found to force all solutions of the equation \[ (r(t)y^{\prime }(t))^{(n-1)} + a(t)h(y(g(t))) = f(t), \]
to behave in peculiar ways. These results are then extended to the elliptic equation \[ |x|^{p-1} \Delta y(|x|) + a(|x|)h(y(g(|x|))) = f(|x|) \]
where $ \Delta $ is the Laplace operator and $p \ge 3$ is an integer.
LA - eng
KW - oscillatory; nonoscillatory; exterior domain; elliptic; functional equation; oscillatory; nonoscillatory; exterior domain; elliptic; functional equation
UR - http://eudml.org/doc/30536
ER -
References
top- On the oscillation and asymptotic properties for general nonlinear differential equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 51 (1976), 211–216. (1976) MR0481263
- 10.1016/0022-247X(77)90029-4, J. Math. Anal. Appl. 60 (1977), 398-409. (1977) Zbl0377.34023MR0454249DOI10.1016/0022-247X(77)90029-4
- 10.1090/S0002-9939-1971-0279384-5, Proc. Amer. Math. Soc. 30 (1971), 92–96. (1971) Zbl0215.15001MR0279384DOI10.1090/S0002-9939-1971-0279384-5
- 10.1017/S0004972700024473, Bull. Austral. Math. Soc. 13 (1975), 291–299. (1975) MR0397114DOI10.1017/S0004972700024473
- Nonoscillation theorems for differential equations with deviating argument, Pacific J. Math. 62 (1976), 185–192. (1976) MR0417536
- 10.1016/0022-247X(90)90039-I, J. Math. Anal. Appl. 48 (1990), 213–222. (1990) MR1052056DOI10.1016/0022-247X(90)90039-I
- 10.1016/0022-247X(74)90003-1, J. Math. Anal. Appl. 47 (1974), 504–512. (1974) MR0355269DOI10.1016/0022-247X(74)90003-1
- 10.1137/0507005, SIAM J. Math. Anal. 7 (1976), 37–44. (1976) Zbl0321.34058MR0425308DOI10.1137/0507005
- 10.32917/hmj/1206135207, Hiroshima Math. J. 9 (1979), 277–302. (1979) Zbl0409.34070MR0529336DOI10.32917/hmj/1206135207
- 10.1137/0128021, SIAM J. Appl. Math. 28 (1975), 265–269. (1975) MR0361376DOI10.1137/0128021
- 10.1137/0506069, SIAM J. Math. Anal. 6 (1975), 784–795. (1975) Zbl0314.34082MR0430474DOI10.1137/0506069
- General functional differential equations and their asymptotic oscillatory behavior, Yokohama Math. J. 24 (1976), 125–132. (1976) Zbl0361.34062MR0425309
- 10.32917/hmj/1206136446, Hiroshima Math. J. 6 (1976), 7–14. (1976) Zbl0329.34057MR0402233DOI10.32917/hmj/1206136446
- 10.32917/hmj/1206134574, Hiroshima Math. J. 10 (1980), 1–9. (1980) MR0558845DOI10.32917/hmj/1206134574
- On the oscillation of a Volterra integral equation, Czechoslovak Math. J. 45 (1995), 699–707. (1995) Zbl0847.45003MR1354927
- 10.1155/S0161171278000307, Internat. J. Math. & Math. Sci. 1 (1978), 269–283. (1978) Zbl0389.34048MR0510559DOI10.1155/S0161171278000307
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.