On prime submodules and primary decomposition

Yücel Tiraş; Harmanci, Abdullah

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 1, page 83-90
  • ISSN: 0011-4642

Abstract

top
We characterize prime submodules of R × R for a principal ideal domain R and investigate the primary decomposition of any submodule into primary submodules of R × R .

How to cite

top

Tiraş, Yücel, and Harmanci, Abdullah. "On prime submodules and primary decomposition." Czechoslovak Mathematical Journal 50.1 (2000): 83-90. <http://eudml.org/doc/30544>.

@article{Tiraş2000,
abstract = {We characterize prime submodules of $R\times R$ for a principal ideal domain $R$ and investigate the primary decomposition of any submodule into primary submodules of $R\times R.$},
author = {Tiraş, Yücel, Harmanci, Abdullah},
journal = {Czechoslovak Mathematical Journal},
keywords = {Prime submodule; primary submodule; primary decomposition; Associated primes; prime submodule; primary decomposition; principal ideal domain; associated primes},
language = {eng},
number = {1},
pages = {83-90},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On prime submodules and primary decomposition},
url = {http://eudml.org/doc/30544},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Tiraş, Yücel
AU - Harmanci, Abdullah
TI - On prime submodules and primary decomposition
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 83
EP - 90
AB - We characterize prime submodules of $R\times R$ for a principal ideal domain $R$ and investigate the primary decomposition of any submodule into primary submodules of $R\times R.$
LA - eng
KW - Prime submodule; primary submodule; primary decomposition; Associated primes; prime submodule; primary decomposition; principal ideal domain; associated primes
UR - http://eudml.org/doc/30544
ER -

References

top
  1. 10.1080/00927879208824530, Comm. Algebra 20 (12) (1992), 3593–3602. (1992) MR1191968DOI10.1080/00927879208824530
  2. Prime submodules of modules, Comm. Math. Univ. Sancti. Pauli 33 (1984), 61–69. (1984) Zbl0575.13005MR0741378
  3. M -radicals of submodules in modules, Math. Japon. 34 (1989), no. 2, 211–219. (1989) Zbl0706.13002MR0994584
  4. M -radicals of submodules in modules II, Math. Japon. 35 (1990), no. 5, 991–1001. (1990) Zbl0719.13001MR1073902
  5. 10.1080/00927879408824957, Comm. Algebra 22 (6) (1994), 2083–2099. (1994) MR1268545DOI10.1080/00927879408824957
  6. 10.4153/CMB-1986-006-7, Canad. Math. Bull. 29 (1) (1986). (1986) MR0824879DOI10.4153/CMB-1986-006-7
  7. 10.1216/rmjm/1181072540, Rocky Mountain J. Math. 23 (1993), no. 3. (1993) MR1245463DOI10.1216/rmjm/1181072540
  8. Commutative Ring Theory, Cambridge University Press, 1980. (1980) MR0879273
  9. Steps in Commutative Algebra, Cambridge University Press, 1990. (1990) Zbl0703.13001MR1070568

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.