Construction of -groups with quasi-divisors theory
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 1, page 197-207
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMočkoř, Jiří. "Construction of $po$-groups with quasi-divisors theory." Czechoslovak Mathematical Journal 50.1 (2000): 197-207. <http://eudml.org/doc/30554>.
@article{Močkoř2000,
abstract = {A method is presented making it possible to construct $po$-groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups $H(\Delta ,\mathbb \{Z\})$, where $\Delta $ are finitely atomic root systems. Some examples of these constructions are presented.},
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi-divisor theory; divisor class group; quasi-divisor theory; divisor class group; partially ordered groups},
language = {eng},
number = {1},
pages = {197-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Construction of $po$-groups with quasi-divisors theory},
url = {http://eudml.org/doc/30554},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Močkoř, Jiří
TI - Construction of $po$-groups with quasi-divisors theory
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 197
EP - 207
AB - A method is presented making it possible to construct $po$-groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups $H(\Delta ,\mathbb {Z})$, where $\Delta $ are finitely atomic root systems. Some examples of these constructions are presented.
LA - eng
KW - quasi-divisor theory; divisor class group; quasi-divisor theory; divisor class group; partially ordered groups
UR - http://eudml.org/doc/30554
ER -
References
top- Lattice-ordered Groups, D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. (1988) MR0937703
- Divisors of finite character, Annali di matem. pura ed appl. 33 (1983), 327–361. (1983) Zbl0533.20034MR0725032
- Localizations dans les systémes d’idéaux, C.R.Acad. Sci. Paris 272 (1971), 465–468. (1971) MR0277511
- Number Theory, Academic Press, New York, 1966. (1966) MR0195803
- Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
- 10.4153/CJM-1981-112-x, Canad. J. Math. 33 (1981), 1459–1468. (1981) MR0645239DOI10.4153/CJM-1981-112-x
- 10.1016/0022-4049(94)00088-Z, J. Pure Appl. Algebra 102 (1995), 289–311. (1995) MR1354993DOI10.1016/0022-4049(94)00088-Z
- Multiplicative Ideal Theory, M. Dekker, Inc., New York, 1972. (1972) Zbl0248.13001MR0427289
- Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1–27. (1968) Zbl0173.03504MR0220726
- 10.4153/CJM-1967-065-8, Canad. J. Math. 19 (1967), 710–722. (1967) Zbl0148.26701MR0215830DOI10.4153/CJM-1967-065-8
- Les systémes d’idéaux, Dunod, Paris, 1960. (1960) Zbl0101.27502MR0114810
- Groups of Divisibility, D. Reidl Publ. Co., Dordrecht, 1983. (1983) MR0720862
- Approximation Theorems in Commutative Algebra, Kluwer Academic publ., Dordrecht, 1992. (1992) MR1207134
- Groups with quasi-divisor theory, Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. (1993) MR1223185
- Divisor class groups of ordered subgroups, Acta Math. Inform. Univ. Ostraviensis 1 (1993). (1993) MR1250925
- Quasi-divisors theory of partly ordered groups, Grazer Math. Ber. 318 (1992), 81–98. (1992) MR1227404
- -Valuation and theory of quasi-divisors,, To appear in J. Pure Appl. Algebra. MR1466097
- Some remarks on Lorezen -group of partly ordered group,, Czechoslovak Math. J. 46(121) (1996), 537–552. (1996) MR1408304
- Divisor class group and the theory of quasi-divisors, To appear. MR1765996
- 10.4153/CJM-1969-065-9, Canad. J. Math. 21 (1969), 576–591. (1969) Zbl0177.06501MR0242819DOI10.4153/CJM-1969-065-9
- Divisorentheorie einer Halbgruppe, Math. Z. 114 (1970), 113–120. (1970) Zbl0177.03202MR0262401
- 10.4064/aa-31-3-247-257, Acta Arith. 31 (1976), 247–257. (1976) Zbl0303.13014MR0444817DOI10.4064/aa-31-3-247-257
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.