Construction of p o -groups with quasi-divisors theory

Jiří Močkoř

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 1, page 197-207
  • ISSN: 0011-4642

Abstract

top
A method is presented making it possible to construct p o -groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups H ( Δ , ) , where Δ are finitely atomic root systems. Some examples of these constructions are presented.

How to cite

top

Močkoř, Jiří. "Construction of $po$-groups with quasi-divisors theory." Czechoslovak Mathematical Journal 50.1 (2000): 197-207. <http://eudml.org/doc/30554>.

@article{Močkoř2000,
abstract = {A method is presented making it possible to construct $po$-groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups $H(\Delta ,\mathbb \{Z\})$, where $\Delta $ are finitely atomic root systems. Some examples of these constructions are presented.},
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi-divisor theory; divisor class group; quasi-divisor theory; divisor class group; partially ordered groups},
language = {eng},
number = {1},
pages = {197-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Construction of $po$-groups with quasi-divisors theory},
url = {http://eudml.org/doc/30554},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Močkoř, Jiří
TI - Construction of $po$-groups with quasi-divisors theory
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 197
EP - 207
AB - A method is presented making it possible to construct $po$-groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups $H(\Delta ,\mathbb {Z})$, where $\Delta $ are finitely atomic root systems. Some examples of these constructions are presented.
LA - eng
KW - quasi-divisor theory; divisor class group; quasi-divisor theory; divisor class group; partially ordered groups
UR - http://eudml.org/doc/30554
ER -

References

top
  1. Lattice-ordered Groups, D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. (1988) MR0937703
  2. Divisors of finite character, Annali di matem. pura ed appl. 33 (1983), 327–361. (1983) Zbl0533.20034MR0725032
  3. Localizations dans les systémes d’idéaux, C.R.Acad. Sci. Paris 272 (1971), 465–468. (1971) MR0277511
  4. Number Theory, Academic Press, New York, 1966. (1966) MR0195803
  5. Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
  6. 10.4153/CJM-1981-112-x, Canad. J. Math. 33 (1981), 1459–1468. (1981) MR0645239DOI10.4153/CJM-1981-112-x
  7. 10.1016/0022-4049(94)00088-Z, J. Pure Appl. Algebra 102 (1995), 289–311. (1995) MR1354993DOI10.1016/0022-4049(94)00088-Z
  8. Multiplicative Ideal Theory, M. Dekker, Inc., New York, 1972. (1972) Zbl0248.13001MR0427289
  9. Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1–27. (1968) Zbl0173.03504MR0220726
  10. 10.4153/CJM-1967-065-8, Canad. J. Math. 19 (1967), 710–722. (1967) Zbl0148.26701MR0215830DOI10.4153/CJM-1967-065-8
  11. Les systémes d’idéaux, Dunod, Paris, 1960. (1960) Zbl0101.27502MR0114810
  12. Groups of Divisibility, D. Reidl Publ. Co., Dordrecht, 1983. (1983) MR0720862
  13. Approximation Theorems in Commutative Algebra, Kluwer Academic publ., Dordrecht, 1992. (1992) MR1207134
  14. Groups with quasi-divisor theory, Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. (1993) MR1223185
  15. Divisor class groups of ordered subgroups, Acta Math. Inform. Univ. Ostraviensis 1 (1993). (1993) MR1250925
  16. Quasi-divisors theory of partly ordered groups, Grazer Math. Ber. 318 (1992), 81–98. (1992) MR1227404
  17. t -Valuation and theory of quasi-divisors,, To appear in J. Pure Appl. Algebra. MR1466097
  18. Some remarks on Lorezen r -group of partly ordered group,, Czechoslovak Math. J. 46(121) (1996), 537–552. (1996) MR1408304
  19. Divisor class group and the theory of quasi-divisors, To appear. MR1765996
  20. 10.4153/CJM-1969-065-9, Canad. J. Math. 21 (1969), 576–591. (1969) Zbl0177.06501MR0242819DOI10.4153/CJM-1969-065-9
  21. Divisorentheorie einer Halbgruppe, Math. Z. 114 (1970), 113–120. (1970) Zbl0177.03202MR0262401
  22. 10.4064/aa-31-3-247-257, Acta Arith. 31 (1976), 247–257. (1976) Zbl0303.13014MR0444817DOI10.4064/aa-31-3-247-257

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.