Loading [MathJax]/extensions/MathZoom.js
Using lattice-ordered algebras it is shown that a totally ordered field which has a unique total order and is dense in its real closure has the property that each of its positive semidefinite rational functions is a sum of squares.
A method is presented making it possible to construct -groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups , where are finitely atomic root systems. Some examples of these constructions are presented.
This is a summary of some of the main results in the monograph Faithfully Ordered Rings (Mem. Amer. Math. Soc. 2015), presented by the first author at the ALANT conference, Będlewo, Poland, June 8-13, 2014. The notions involved and the results are stated in detail, the techniques employed briefly outlined, but proofs are omitted. We focus on those aspects of the cited monograph concerning (diagonal) quadratic forms over preordered rings.
Weakly associative lattice rings (wal-rings) are non-transitive generalizations of lattice ordered rings (l-rings). As is known, the class of l-rings which are subdirect products of linearly ordered rings (i.e. the class of f-rings) plays an important role in the theory of l-rings. In the paper, the classes of wal-rings representable as subdirect products of to-rings and ao-rings (both being non-transitive generalizations of the class of f-rings) are characterized and the class of wal-rings having...
We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if is such a variety, then every piecewise polynomial function on can be written as suprema of infima of polynomial functions on . More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of such varieties, which implies the Pierce-Birkhoff Conjecture.
This short note is a continuation of and and its purpose is to show that every simple zeropotent paramedial groupoid containing at least three elements is strongly balanced in the sense of .
Currently displaying 1 –
13 of
13