Random fixed point theorems for a certain class of mappings in Banach spaces

Jong Soo Jung; Yeol Je Cho; Shin Min Kang; Byung-Soo Lee; Balwant Singh Thakur

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 2, page 379-396
  • ISSN: 0011-4642

Abstract

top
Let ( Ω , Σ ) be a measurable space and C a nonempty bounded closed convex separable subset of p -uniformly convex Banach space E for some p > 1 . We prove random fixed point theorems for a class of mappings T Ω × C C satisfying: for each x , y C , ω Ω and integer n 1 , T n ( ω , x ) - T n ( ω , y ) a ( ω ) · x - y + b ( ω ) { x - T n ( ω , x ) + y - T n ( ω , y ) } + c ( ω ) { x - T n ( ω , y ) + y - T n ( ω , x ) } , where a , b , c Ω [ 0 , ) are functions satisfying certain conditions and T n ( ω , x ) is the value at x of the n -th iterate of the mapping T ( ω , · ) . Further we establish for these mappings some random fixed point theorems in a Hilbert space, in L p spaces, in Hardy spaces H p and in Sobolev spaces H k , p for 1 < p < and k 0 . As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].

How to cite

top

Jung, Jong Soo, et al. "Random fixed point theorems for a certain class of mappings in Banach spaces." Czechoslovak Mathematical Journal 50.2 (2000): 379-396. <http://eudml.org/doc/30569>.

@article{Jung2000,
abstract = {Let $(\Omega ,\Sigma )$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \] where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^\{k,p\} $ for $1 < p < \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].},
author = {Jung, Jong Soo, Cho, Yeol Je, Kang, Shin Min, Lee, Byung-Soo, Thakur, Balwant Singh},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping; random fixed points; generalized random uniformly Lipschitzian mappings},
language = {eng},
number = {2},
pages = {379-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Random fixed point theorems for a certain class of mappings in Banach spaces},
url = {http://eudml.org/doc/30569},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Jung, Jong Soo
AU - Cho, Yeol Je
AU - Kang, Shin Min
AU - Lee, Byung-Soo
AU - Thakur, Balwant Singh
TI - Random fixed point theorems for a certain class of mappings in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 379
EP - 396
AB - Let $(\Omega ,\Sigma )$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \] where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p} $ for $1 < p < \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].
LA - eng
KW - $p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping; random fixed points; generalized random uniformly Lipschitzian mappings
UR - http://eudml.org/doc/30569
ER -

References

top
  1. An Introduction to the Theory of Distribution., Dekker, New York, 1973. (1973) MR0461128
  2. 10.1090/S0002-9904-1976-14091-8, Bull. Amer. Math. Soc. 82 (1976), 641–645. (1976) Zbl0339.60061MR0413273DOI10.1090/S0002-9904-1976-14091-8
  3. Random Integral Equations, Academic Press, New York and London, 1977. (1977) Zbl0373.60072MR0443086
  4. A general random fixed point theorem and applications to random equations, Rev. Roumaine Math. Pures Appl. 26 (1981), 375–379. (1981) Zbl0473.60057MR0627283
  5. 10.2140/pjm.1980.86.427, Pacific J. Math. 86 (1980), 427–436. (1980) MR0590555DOI10.2140/pjm.1980.86.427
  6. Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. TMA 9 (1985), 103–108. (1985) MR0776365
  7. Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977. (1977) MR0467310
  8. 10.2140/pjm.1983.105.21, Pacific J. Math. 105 (1983), 21–31. (1983) Zbl0512.47044MR0688405DOI10.2140/pjm.1983.105.21
  9. On densifying and related mappings and their applications in nonlinear functional analysis, In: Theory of nonlinear Operators, Proc. Summer School, GDR, Akademie-Verlag, Berlin, Oct.1972 1974, pp. 15–56. (Oct.1972 1974) MR0361946
  10. Linear Operators, Vol I, Interscience, New York, 1958. (1958) 
  11. Theory of H p Spaces, Academic Press, New York, 1970. (1970) MR0268655
  12. 10.2140/pjm.1978.76.351, Pacific J. Math. 76 (1978), 351–360. (1978) Zbl0355.47035MR0500323DOI10.2140/pjm.1978.76.351
  13. 10.4064/sm-47-2-134-140, Studia. Math. 47 (1973), 135–140. (1973) MR0336468DOI10.4064/sm-47-2-134-140
  14. 10.2140/pjm.1977.68.85, Pacific J. Math 68 (1977), 85–90. (1977) Zbl0335.54036MR0451228DOI10.2140/pjm.1977.68.85
  15. 10.1016/0022-247X(79)90023-4, J. Math. Anal. Appl. 67 (1979), 261–273. (1979) Zbl0407.60069MR0528687DOI10.1016/0022-247X(79)90023-4
  16. 10.4064/fm-87-1-53-72, Fund. Math. 87 (1975), 53–72. (1975) Zbl0296.28003MR0367142DOI10.4064/fm-87-1-53-72
  17. Fixed point theorems for uniformly Lipschitzian mappings in L p spaces, Nonlinear Anal. 7 (1983), 555–563. (1983) MR0698365
  18. 10.1090/S0002-9939-1983-0695255-2, Proc. Amer. Math. Soc. 88 (1983), 262–264. (1983) Zbl0541.46017MR0695255DOI10.1090/S0002-9939-1983-0695255-2
  19. An L p inequalities and its applications to fixed point theory and approximation theory, In: Progress in Approximation Theory, Academic Press, 1991, pp. 609–624. (1991) 
  20. 10.1090/S0002-9939-1988-0954994-0, Proc. Amer. Math. Soc. 103 (1988), 1129–1135. (1988) Zbl0676.47041MR0954994DOI10.1090/S0002-9939-1988-0954994-0
  21. Classical Banach Spaces II—Function Spaces, Springer-Verlag, New York, Berlin, 1979. (1979) MR0540367
  22. Fixed point theorem for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Math. Fak. 16 (1975), 23–28. (Russian) (1975) 
  23. Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Polish Acad. Sci. Math. 34 (1986), 487–494. (1986) Zbl0617.60059MR0874895
  24. Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 32 (1987), 507–514. (1987) MR0840638
  25. Deterministic and random fixed point theorems for single valued and multivalued functions, Rev. Roumaine Math. Pures Appl. 32 (1989), 53–61. (1989) MR0901435
  26. Jung’s constant of the space L p , Mat. Zametki Math. Notes 43 43 (1988 1988), 609–614 348–354. (Russian) (1988 1988) MR0954343
  27. 10.1016/0022-247X(87)90234-4, J. Math. Anal. Appl. 121 (1987), 10–21. (1987) MR0869515DOI10.1016/0022-247X(87)90234-4
  28. On Bynum’s fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modena 38 (1990), 535–545. (1990) Zbl0724.46020MR1076471
  29. Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo XL(2) (1991), 128–135. (1991) Zbl0757.46029MR1119750
  30. 10.1016/0022-247X(89)90163-7, J. Math. Anal. Appl. 142 (1989), 53–61. (1989) Zbl0681.60056MR1011408DOI10.1016/0022-247X(89)90163-7
  31. 10.1090/S0002-9939-1984-0728362-7, Proc. Amer. Math. Soc. 90 (1984), 425–429. (1984) MR0728362DOI10.1090/S0002-9939-1984-0728362-7
  32. 10.1090/S0002-9939-1985-0796453-1, Proc. Amer. Math. Soc. 95 (1985), 91–94. (1985) MR0796453DOI10.1090/S0002-9939-1985-0796453-1
  33. 10.1016/0021-9045(87)90035-9, J. Approx. Theory 51 (1987), 202–217. (1987) MR0913618DOI10.1016/0021-9045(87)90035-9
  34. 10.1016/0022-247X(90)90201-P, J. Math. Anal. Appl. 150 (1990), 146–150. (1990) MR1059576DOI10.1016/0022-247X(90)90201-P
  35. Some random fixed point theorems, In Fixed Point Theory and Applications, K. K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. (1992) MR1190049
  36. 10.1090/S0002-9939-1993-1169051-2, Proc. Amer. Math. Soc 119 (1993), 849–856. (1993) MR1169051DOI10.1090/S0002-9939-1993-1169051-2
  37. 10.1016/0362-546X(93)90144-H, Nonlinear Anal. 20 (1993), 395–404. (1993) MR1206429DOI10.1016/0362-546X(93)90144-H
  38. 10.1137/0315056, SIAM J. Control Optim. 15 (1977), 859–903. (1977) Zbl0407.28006MR0486391DOI10.1137/0315056
  39. 10.1016/0022-247X(90)90072-N, J. Math. Anal. Appl. 152 (1990), 391–398. (1990) MR1077935DOI10.1016/0022-247X(90)90072-N
  40. 10.1090/S0002-9939-1990-1021908-6, Proc. Amer. Math. Soc. 110 (1990), 395–400. (1990) Zbl0716.47029MR1021908DOI10.1090/S0002-9939-1990-1021908-6
  41. 10.1016/0362-546X(91)90200-K, Nonlinear Anal. 16 (1991), 1127–1138. (1991) Zbl0757.46033MR1111623DOI10.1016/0362-546X(91)90200-K
  42. 10.1090/S0002-9939-1993-1123670-8, Proc. Amer. Math. Soc. 117 (1993), 1089–1092. (1993) MR1123670DOI10.1090/S0002-9939-1993-1123670-8
  43. Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1302–1311. (1996) Zbl0864.47051MR1376105
  44. 10.1016/0022-247X(83)90112-9, J. Math. Anal. Appl. 95 (1988), 344–374. (1988) MR0716088DOI10.1016/0022-247X(83)90112-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.