Random fixed point theorems for a certain class of mappings in Banach spaces
Jong Soo Jung; Yeol Je Cho; Shin Min Kang; Byung-Soo Lee; Balwant Singh Thakur
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 2, page 379-396
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJung, Jong Soo, et al. "Random fixed point theorems for a certain class of mappings in Banach spaces." Czechoslovak Mathematical Journal 50.2 (2000): 379-396. <http://eudml.org/doc/30569>.
@article{Jung2000,
abstract = {Let $(\Omega ,\Sigma )$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \]
where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^\{k,p\} $ for $1 < p < \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].},
author = {Jung, Jong Soo, Cho, Yeol Je, Kang, Shin Min, Lee, Byung-Soo, Thakur, Balwant Singh},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping; random fixed points; generalized random uniformly Lipschitzian mappings},
language = {eng},
number = {2},
pages = {379-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Random fixed point theorems for a certain class of mappings in Banach spaces},
url = {http://eudml.org/doc/30569},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Jung, Jong Soo
AU - Cho, Yeol Je
AU - Kang, Shin Min
AU - Lee, Byung-Soo
AU - Thakur, Balwant Singh
TI - Random fixed point theorems for a certain class of mappings in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 379
EP - 396
AB - Let $(\Omega ,\Sigma )$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \]
where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p} $ for $1 < p < \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].
LA - eng
KW - $p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping; random fixed points; generalized random uniformly Lipschitzian mappings
UR - http://eudml.org/doc/30569
ER -
References
top- An Introduction to the Theory of Distribution., Dekker, New York, 1973. (1973) MR0461128
- 10.1090/S0002-9904-1976-14091-8, Bull. Amer. Math. Soc. 82 (1976), 641–645. (1976) Zbl0339.60061MR0413273DOI10.1090/S0002-9904-1976-14091-8
- Random Integral Equations, Academic Press, New York and London, 1977. (1977) Zbl0373.60072MR0443086
- A general random fixed point theorem and applications to random equations, Rev. Roumaine Math. Pures Appl. 26 (1981), 375–379. (1981) Zbl0473.60057MR0627283
- 10.2140/pjm.1980.86.427, Pacific J. Math. 86 (1980), 427–436. (1980) MR0590555DOI10.2140/pjm.1980.86.427
- Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. TMA 9 (1985), 103–108. (1985) MR0776365
- Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977. (1977) MR0467310
- 10.2140/pjm.1983.105.21, Pacific J. Math. 105 (1983), 21–31. (1983) Zbl0512.47044MR0688405DOI10.2140/pjm.1983.105.21
- On densifying and related mappings and their applications in nonlinear functional analysis, In: Theory of nonlinear Operators, Proc. Summer School, GDR, Akademie-Verlag, Berlin, Oct.1972 1974, pp. 15–56. (Oct.1972 1974) MR0361946
- Linear Operators, Vol I, Interscience, New York, 1958. (1958)
- Theory of Spaces, Academic Press, New York, 1970. (1970) MR0268655
- 10.2140/pjm.1978.76.351, Pacific J. Math. 76 (1978), 351–360. (1978) Zbl0355.47035MR0500323DOI10.2140/pjm.1978.76.351
- 10.4064/sm-47-2-134-140, Studia. Math. 47 (1973), 135–140. (1973) MR0336468DOI10.4064/sm-47-2-134-140
- 10.2140/pjm.1977.68.85, Pacific J. Math 68 (1977), 85–90. (1977) Zbl0335.54036MR0451228DOI10.2140/pjm.1977.68.85
- 10.1016/0022-247X(79)90023-4, J. Math. Anal. Appl. 67 (1979), 261–273. (1979) Zbl0407.60069MR0528687DOI10.1016/0022-247X(79)90023-4
- 10.4064/fm-87-1-53-72, Fund. Math. 87 (1975), 53–72. (1975) Zbl0296.28003MR0367142DOI10.4064/fm-87-1-53-72
- Fixed point theorems for uniformly Lipschitzian mappings in spaces, Nonlinear Anal. 7 (1983), 555–563. (1983) MR0698365
- 10.1090/S0002-9939-1983-0695255-2, Proc. Amer. Math. Soc. 88 (1983), 262–264. (1983) Zbl0541.46017MR0695255DOI10.1090/S0002-9939-1983-0695255-2
- An inequalities and its applications to fixed point theory and approximation theory, In: Progress in Approximation Theory, Academic Press, 1991, pp. 609–624. (1991)
- 10.1090/S0002-9939-1988-0954994-0, Proc. Amer. Math. Soc. 103 (1988), 1129–1135. (1988) Zbl0676.47041MR0954994DOI10.1090/S0002-9939-1988-0954994-0
- Classical Banach Spaces II—Function Spaces, Springer-Verlag, New York, Berlin, 1979. (1979) MR0540367
- Fixed point theorem for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Math. Fak. 16 (1975), 23–28. (Russian) (1975)
- Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Polish Acad. Sci. Math. 34 (1986), 487–494. (1986) Zbl0617.60059MR0874895
- Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 32 (1987), 507–514. (1987) MR0840638
- Deterministic and random fixed point theorems for single valued and multivalued functions, Rev. Roumaine Math. Pures Appl. 32 (1989), 53–61. (1989) MR0901435
- Jung’s constant of the space , Mat. Zametki Math. Notes 43 43 (1988 1988), 609–614 348–354. (Russian) (1988 1988) MR0954343
- 10.1016/0022-247X(87)90234-4, J. Math. Anal. Appl. 121 (1987), 10–21. (1987) MR0869515DOI10.1016/0022-247X(87)90234-4
- On Bynum’s fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modena 38 (1990), 535–545. (1990) Zbl0724.46020MR1076471
- Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo XL(2) (1991), 128–135. (1991) Zbl0757.46029MR1119750
- 10.1016/0022-247X(89)90163-7, J. Math. Anal. Appl. 142 (1989), 53–61. (1989) Zbl0681.60056MR1011408DOI10.1016/0022-247X(89)90163-7
- 10.1090/S0002-9939-1984-0728362-7, Proc. Amer. Math. Soc. 90 (1984), 425–429. (1984) MR0728362DOI10.1090/S0002-9939-1984-0728362-7
- 10.1090/S0002-9939-1985-0796453-1, Proc. Amer. Math. Soc. 95 (1985), 91–94. (1985) MR0796453DOI10.1090/S0002-9939-1985-0796453-1
- 10.1016/0021-9045(87)90035-9, J. Approx. Theory 51 (1987), 202–217. (1987) MR0913618DOI10.1016/0021-9045(87)90035-9
- 10.1016/0022-247X(90)90201-P, J. Math. Anal. Appl. 150 (1990), 146–150. (1990) MR1059576DOI10.1016/0022-247X(90)90201-P
- Some random fixed point theorems, In Fixed Point Theory and Applications, K. K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. (1992) MR1190049
- 10.1090/S0002-9939-1993-1169051-2, Proc. Amer. Math. Soc 119 (1993), 849–856. (1993) MR1169051DOI10.1090/S0002-9939-1993-1169051-2
- 10.1016/0362-546X(93)90144-H, Nonlinear Anal. 20 (1993), 395–404. (1993) MR1206429DOI10.1016/0362-546X(93)90144-H
- 10.1137/0315056, SIAM J. Control Optim. 15 (1977), 859–903. (1977) Zbl0407.28006MR0486391DOI10.1137/0315056
- 10.1016/0022-247X(90)90072-N, J. Math. Anal. Appl. 152 (1990), 391–398. (1990) MR1077935DOI10.1016/0022-247X(90)90072-N
- 10.1090/S0002-9939-1990-1021908-6, Proc. Amer. Math. Soc. 110 (1990), 395–400. (1990) Zbl0716.47029MR1021908DOI10.1090/S0002-9939-1990-1021908-6
- 10.1016/0362-546X(91)90200-K, Nonlinear Anal. 16 (1991), 1127–1138. (1991) Zbl0757.46033MR1111623DOI10.1016/0362-546X(91)90200-K
- 10.1090/S0002-9939-1993-1123670-8, Proc. Amer. Math. Soc. 117 (1993), 1089–1092. (1993) MR1123670DOI10.1090/S0002-9939-1993-1123670-8
- Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1302–1311. (1996) Zbl0864.47051MR1376105
- 10.1016/0022-247X(83)90112-9, J. Math. Anal. Appl. 95 (1988), 344–374. (1988) MR0716088DOI10.1016/0022-247X(83)90112-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.