Strong topologies on vector-valued function spaces
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 2, page 401-414
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNowak, Marian. "Strong topologies on vector-valued function spaces." Czechoslovak Mathematical Journal 50.2 (2000): 401-414. <http://eudml.org/doc/30571>.
@article{Nowak2000,
abstract = {Let $(X,\Vert \cdot \Vert _X)$ be a real Banach space and let $E$ be an ideal of $L^0$ over a $\sigma $-finite measure space $(Ø,\Sigma ,\mu )$. Let $(X)$ be the space of all strongly $\Sigma $-measurable functions $f\: Ø\rightarrow X$ such that the scalar function $\{\widetilde\{f\}\}$, defined by $\{\widetilde\{f\}\}(ø)=\Vert f(ø)\Vert _X$ for $ø\in Ø$, belongs to $E$. The paper deals with strong topologies on $E(X)$. In particular, the strong topology $\beta (E(X), E(X)^\sim _n)$ ($E(X)^\sim _n=$ the order continuous dual of $E(X)$) is examined. We generalize earlier results of [PC] and [FPS] concerning the strong topologies.},
author = {Nowak, Marian},
journal = {Czechoslovak Mathematical Journal},
keywords = {vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies; vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies},
language = {eng},
number = {2},
pages = {401-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong topologies on vector-valued function spaces},
url = {http://eudml.org/doc/30571},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Nowak, Marian
TI - Strong topologies on vector-valued function spaces
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 401
EP - 414
AB - Let $(X,\Vert \cdot \Vert _X)$ be a real Banach space and let $E$ be an ideal of $L^0$ over a $\sigma $-finite measure space $(Ø,\Sigma ,\mu )$. Let $(X)$ be the space of all strongly $\Sigma $-measurable functions $f\: Ø\rightarrow X$ such that the scalar function ${\widetilde{f}}$, defined by ${\widetilde{f}}(ø)=\Vert f(ø)\Vert _X$ for $ø\in Ø$, belongs to $E$. The paper deals with strong topologies on $E(X)$. In particular, the strong topology $\beta (E(X), E(X)^\sim _n)$ ($E(X)^\sim _n=$ the order continuous dual of $E(X)$) is examined. We generalize earlier results of [PC] and [FPS] concerning the strong topologies.
LA - eng
KW - vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies; vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies
UR - http://eudml.org/doc/30571
ER -
References
top- Locally Solid Riesz Spaces, Academic Press, New York, San Francisco, London, 1978. (1978) MR0493242
- Positive Operators, Academic Press, Inc., 1985. MR0809372
- Vector-valued function spaces and tensor products, Siberian Math. J. 13 (1972), no. 6, 1229–1238. (Russian) (1972) MR0358342
- On an analytic representation of operators with abstract norm, Soviet. Math. Dokl. 14 (1973), 197–201. (1973) Zbl0283.47028
- On an analytic representation of operators with abstract norm, Izv. Vyssh. Ucebn. Zaved. Mat. 11 (1975), 21–32. (Russian) (1975) MR0470746
- On an analytic representation of linear operators by vector-valued measurable functions, Izv. Vyssh. Ucebn. Zaved. Mat. 7 (1977), 21–31. (Russian) (1977)
- 10.1017/S0305004100075058, Math. Proc. Cambridge Philos. Soc. 120 (1996), 521–533. (1996) MR1388204DOI10.1017/S0305004100075058
- Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, 1977. (1977) MR0453964
- Locally solid topologies on vector-valued function spaces, Collect. Math. 48, 4–6 (1997), 487–511. (1997) MR1602576
- 10.1017/S0305004100070845, Math. Proc. Cambridge Philos. Soc. 112 (1992), 165–174. (1992) MR1162941DOI10.1017/S0305004100070845
- Topological Riesz Spaces and Measure Theory, Camb. Univ. Press, 1974. (1974) Zbl0273.46035MR0454575
- Some basic properties of vector sequence spaces, J. Reine Angew. Math. 237 (1969), 26–38. (1969) MR0251497
- Functional Analysis, 3 ed., Nauka, Moscow, 1984. (Russian) (1984) MR0788496
- Topological Vector Spaces I, Springer-Verlag, Berlin, Heidelberg, New York, 1983. (1983) MR0248498
- 10.1215/ijm/1256051473, Illinois J. Math. 17 (1973), 533–545. (1973) Zbl0271.46034MR0333662DOI10.1215/ijm/1256051473
- 10.1215/S0012-7094-72-03915-4, Duke Math. J. 39 (1972), 105–119. (1972) MR0295045DOI10.1215/S0012-7094-72-03915-4
- Duality theory of vector valued function spaces I, Comment. Math. 37 (1997), 195–215. (1997) Zbl0908.46023MR1608189
- Duality theory of vector–valued function spaces III, Comment. Math. 38 (1998), 101–108. (1998) Zbl0972.46025MR1672244
- 10.1017/S030500410000339X, Math. Proc. Cambridge Philos. Soc. 65 (1969), 601–611. (1969) MR0248499DOI10.1017/S030500410000339X
- Topological Vector Spaces, Cambridge, 1973. (1973) MR0350361
- 10.2140/pjm.1973.46.487, Pacific J. Math. 46 (1973), 487–501. (1973) Zbl0263.46009MR0328544DOI10.2140/pjm.1973.46.487
- 10.1017/S0305004100042900, Math. Proc. Cambridge Philos. Soc. 64 (1968), 341–364. (1968) Zbl0157.20202MR0222602DOI10.1017/S0305004100042900
- 10.2307/1994294, Trans. Amer. Math. Soc. 112 (1964), 267–277. (1964) Zbl0122.11501MR0172110DOI10.2307/1994294
- Modern Methods in Topological Vector Spaces, Mc Graw-Hill, Inc., 1978. (1978) Zbl0395.46001MR0518316
- Introduction to the Theory of Partially Ordered Spaces, Wolter-Hoordhoff, Groningen, Netherlands, 1967. (1967) Zbl0186.44601MR0224522
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.