Strong topologies on vector-valued function spaces

Marian Nowak

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 2, page 401-414
  • ISSN: 0011-4642

Abstract

top
Let ( X , · X ) be a real Banach space and let E be an ideal of L 0 over a σ -finite measure space ( Ø , Σ , μ ) . Let ( X ) be the space of all strongly Σ -measurable functions f Ø X such that the scalar function f ˜ , defined by f ˜ ( ø ) = f ( ø ) X for ø Ø , belongs to E . The paper deals with strong topologies on E ( X ) . In particular, the strong topology β ( E ( X ) , E ( X ) n ) ( E ( X ) n = the order continuous dual of E ( X ) ) is examined. We generalize earlier results of [PC] and [FPS] concerning the strong topologies.

How to cite

top

Nowak, Marian. "Strong topologies on vector-valued function spaces." Czechoslovak Mathematical Journal 50.2 (2000): 401-414. <http://eudml.org/doc/30571>.

@article{Nowak2000,
abstract = {Let $(X,\Vert \cdot \Vert _X)$ be a real Banach space and let $E$ be an ideal of $L^0$ over a $\sigma $-finite measure space $(Ø,\Sigma ,\mu )$. Let $(X)$ be the space of all strongly $\Sigma $-measurable functions $f\: Ø\rightarrow X$ such that the scalar function $\{\widetilde\{f\}\}$, defined by $\{\widetilde\{f\}\}(ø)=\Vert f(ø)\Vert _X$ for $ø\in Ø$, belongs to $E$. The paper deals with strong topologies on $E(X)$. In particular, the strong topology $\beta (E(X), E(X)^\sim _n)$ ($E(X)^\sim _n=$ the order continuous dual of $E(X)$) is examined. We generalize earlier results of [PC] and [FPS] concerning the strong topologies.},
author = {Nowak, Marian},
journal = {Czechoslovak Mathematical Journal},
keywords = {vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies; vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies},
language = {eng},
number = {2},
pages = {401-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong topologies on vector-valued function spaces},
url = {http://eudml.org/doc/30571},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Nowak, Marian
TI - Strong topologies on vector-valued function spaces
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 401
EP - 414
AB - Let $(X,\Vert \cdot \Vert _X)$ be a real Banach space and let $E$ be an ideal of $L^0$ over a $\sigma $-finite measure space $(Ø,\Sigma ,\mu )$. Let $(X)$ be the space of all strongly $\Sigma $-measurable functions $f\: Ø\rightarrow X$ such that the scalar function ${\widetilde{f}}$, defined by ${\widetilde{f}}(ø)=\Vert f(ø)\Vert _X$ for $ø\in Ø$, belongs to $E$. The paper deals with strong topologies on $E(X)$. In particular, the strong topology $\beta (E(X), E(X)^\sim _n)$ ($E(X)^\sim _n=$ the order continuous dual of $E(X)$) is examined. We generalize earlier results of [PC] and [FPS] concerning the strong topologies.
LA - eng
KW - vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies; vector valued function spaces; locally solid topologies; strong topologies; Mackey topologies; absolute weak topologies
UR - http://eudml.org/doc/30571
ER -

References

top
  1. Locally Solid Riesz Spaces, Academic Press, New York, San Francisco, London, 1978. (1978) MR0493242
  2. Positive Operators, Academic Press, Inc., 1985. MR0809372
  3. Vector-valued function spaces and tensor products, Siberian Math. J. 13 (1972), no. 6, 1229–1238. (Russian) (1972) MR0358342
  4. On an analytic representation of operators with abstract norm, Soviet. Math. Dokl. 14 (1973), 197–201. (1973) Zbl0283.47028
  5. On an analytic representation of operators with abstract norm, Izv. Vyssh. Ucebn. Zaved. Mat. 11 (1975), 21–32. (Russian) (1975) MR0470746
  6. On an analytic representation of linear operators by vector-valued measurable functions, Izv. Vyssh. Ucebn. Zaved. Mat. 7 (1977), 21–31. (Russian) (1977) 
  7. 10.1017/S0305004100075058, Math. Proc. Cambridge Philos. Soc. 120 (1996), 521–533. (1996) MR1388204DOI10.1017/S0305004100075058
  8. Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, 1977. (1977) MR0453964
  9. Locally solid topologies on vector-valued function spaces, Collect. Math. 48, 4–6 (1997), 487–511. (1997) MR1602576
  10. 10.1017/S0305004100070845, Math. Proc. Cambridge Philos. Soc. 112 (1992), 165–174. (1992) MR1162941DOI10.1017/S0305004100070845
  11. Topological Riesz Spaces and Measure Theory, Camb. Univ. Press, 1974. (1974) Zbl0273.46035MR0454575
  12. Some basic properties of vector sequence spaces, J. Reine Angew. Math. 237 (1969), 26–38. (1969) MR0251497
  13. Functional Analysis, 3 ed., Nauka, Moscow, 1984. (Russian) (1984) MR0788496
  14. Topological Vector Spaces I, Springer-Verlag, Berlin, Heidelberg, New York, 1983. (1983) MR0248498
  15. 10.1215/ijm/1256051473, Illinois J. Math. 17 (1973), 533–545. (1973) Zbl0271.46034MR0333662DOI10.1215/ijm/1256051473
  16. 10.1215/S0012-7094-72-03915-4, Duke Math. J. 39 (1972), 105–119. (1972) MR0295045DOI10.1215/S0012-7094-72-03915-4
  17. Duality theory of vector valued function spaces I, Comment. Math. 37 (1997), 195–215. (1997) Zbl0908.46023MR1608189
  18. Duality theory of vector–valued function spaces III, Comment. Math. 38 (1998), 101–108. (1998) Zbl0972.46025MR1672244
  19. 10.1017/S030500410000339X, Math. Proc. Cambridge Philos. Soc. 65 (1969), 601–611. (1969) MR0248499DOI10.1017/S030500410000339X
  20. Topological Vector Spaces, Cambridge, 1973. (1973) MR0350361
  21. 10.2140/pjm.1973.46.487, Pacific J. Math. 46 (1973), 487–501. (1973) Zbl0263.46009MR0328544DOI10.2140/pjm.1973.46.487
  22. 10.1017/S0305004100042900, Math. Proc. Cambridge Philos. Soc. 64 (1968), 341–364. (1968) Zbl0157.20202MR0222602DOI10.1017/S0305004100042900
  23. 10.2307/1994294, Trans. Amer. Math. Soc. 112 (1964), 267–277. (1964) Zbl0122.11501MR0172110DOI10.2307/1994294
  24. Modern Methods in Topological Vector Spaces, Mc Graw-Hill, Inc., 1978. (1978) Zbl0395.46001MR0518316
  25. Introduction to the Theory of Partially Ordered Spaces, Wolter-Hoordhoff, Groningen, Netherlands, 1967. (1967) Zbl0186.44601MR0224522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.