Barrelledness of generalized sums of normed spaces
Ariel Fernández; Miguel Florencio; J. Oliveros
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 3, page 459-465
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFernández, Ariel, Florencio, Miguel, and Oliveros, J.. "Barrelledness of generalized sums of normed spaces." Czechoslovak Mathematical Journal 50.3 (2000): 459-465. <http://eudml.org/doc/30576>.
@article{Fernández2000,
abstract = {Let $(E_\{i\})_\{i\in I\}$ be a family of normed spaces and $\lambda $ a space of scalar generalized sequences. The $\lambda $-sum of the family $(E_\{i\})_\{i\in I\}$ of spaces is \[ \lambda \lbrace (E\_\{i\})\_\{i\in I\}\rbrace :=\lbrace (x\_\{i\})\_\{i\in I\},x\_\{i\}\in E\_\{i\}, \quad \text\{and\}\quad (\Vert x\_\{i\}\Vert )\_\{i\in I\}\in \lambda \rbrace . \]
Starting from the topology on $\lambda $ and the norm topology on each $E_i,$ a natural topology on $\lambda \lbrace (E_i)_\{i\in I\}\rbrace $ can be defined. We give conditions for $\lambda \lbrace (E_i)_\{i\in I\}\rbrace $ to be quasi-barrelled, barrelled or locally complete.},
author = {Fernández, Ariel, Florencio, Miguel, Oliveros, J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {barrelled spaces; generalized sequences; barrelled spaces; generalized sequences},
language = {eng},
number = {3},
pages = {459-465},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Barrelledness of generalized sums of normed spaces},
url = {http://eudml.org/doc/30576},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Fernández, Ariel
AU - Florencio, Miguel
AU - Oliveros, J.
TI - Barrelledness of generalized sums of normed spaces
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 459
EP - 465
AB - Let $(E_{i})_{i\in I}$ be a family of normed spaces and $\lambda $ a space of scalar generalized sequences. The $\lambda $-sum of the family $(E_{i})_{i\in I}$ of spaces is \[ \lambda \lbrace (E_{i})_{i\in I}\rbrace :=\lbrace (x_{i})_{i\in I},x_{i}\in E_{i}, \quad \text{and}\quad (\Vert x_{i}\Vert )_{i\in I}\in \lambda \rbrace . \]
Starting from the topology on $\lambda $ and the norm topology on each $E_i,$ a natural topology on $\lambda \lbrace (E_i)_{i\in I}\rbrace $ can be defined. We give conditions for $\lambda \lbrace (E_i)_{i\in I}\rbrace $ to be quasi-barrelled, barrelled or locally complete.
LA - eng
KW - barrelled spaces; generalized sequences; barrelled spaces; generalized sequences
UR - http://eudml.org/doc/30576
ER -
References
top- 10.1007/BF01194241, Arch. Math. (Basel) 60 (1993), 73–78. (1993) MR1193096DOI10.1007/BF01194241
- 10.1007/BF03322300, Results Math. 23 (1993), 242–250. (1993) MR1215213DOI10.1007/BF03322300
- 10.1017/S0017089500030548, Glasgow Math. J. 36 (1994), 57–69. (1994) MR1260818DOI10.1017/S0017089500030548
- Barrelled function spaces, Progress in Functional Analysis, K.D. Bierstedt et al. (eds.), North-Holland Math. Studies, Elsevier/North-Holland, Amsterdam, Oxford, New York and Tokyo, 1992, pp. 191–199. (1992) MR1150746
- On the barrelledness of spaces of bounded vector functions, Arch. Math. (Basel) 63 (1994), 449–458. (1994) MR1300741
- Barrelledness in -sums of normed spaces, Simon Stevin 63 (1989), 209–217. (1989) MR1061568
- Locally Convex Spaces, B.G. Teubner. Stuttgart, 1981. (1981) Zbl0466.46001MR0632257
- On the barrelledness of -direct sums of seminormed spaces for , Arch. Math. (Basel) 62 (1994), 331–334. (1994) MR1264704
- Topological Vector Spaces I, Springer-Verlag, Berlin, Heidelberg and New York, 1969. (1969) MR0248498
- 10.1007/BF01171437, Manuscripta Math. 14 (1974), 107–121. (1974) MR0367612DOI10.1007/BF01171437
- Barrelled Locally Convex Spaces, North-Holland Math. Studies, North-Holland, Amsterdam, New York, Oxford and Tokyo, 1987. (1987) MR0880207
- 10.2140/pjm.1973.46.487, Pacific J. Math. 46 (1973), . (1973) Zbl0263.46009MR0328544DOI10.2140/pjm.1973.46.487
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.