Barrelledness of generalized sums of normed spaces

Ariel Fernández; Miguel Florencio; J. Oliveros

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 3, page 459-465
  • ISSN: 0011-4642

Abstract

top
Let ( E i ) i I be a family of normed spaces and λ a space of scalar generalized sequences. The λ -sum of the family ( E i ) i I of spaces is λ { ( E i ) i I } : = { ( x i ) i I , x i E i , and ( x i ) i I λ } . Starting from the topology on λ and the norm topology on each E i , a natural topology on λ { ( E i ) i I } can be defined. We give conditions for λ { ( E i ) i I } to be quasi-barrelled, barrelled or locally complete.

How to cite

top

Fernández, Ariel, Florencio, Miguel, and Oliveros, J.. "Barrelledness of generalized sums of normed spaces." Czechoslovak Mathematical Journal 50.3 (2000): 459-465. <http://eudml.org/doc/30576>.

@article{Fernández2000,
abstract = {Let $(E_\{i\})_\{i\in I\}$ be a family of normed spaces and $\lambda $ a space of scalar generalized sequences. The $\lambda $-sum of the family $(E_\{i\})_\{i\in I\}$ of spaces is \[ \lambda \lbrace (E\_\{i\})\_\{i\in I\}\rbrace :=\lbrace (x\_\{i\})\_\{i\in I\},x\_\{i\}\in E\_\{i\}, \quad \text\{and\}\quad (\Vert x\_\{i\}\Vert )\_\{i\in I\}\in \lambda \rbrace . \] Starting from the topology on $\lambda $ and the norm topology on each $E_i,$ a natural topology on $\lambda \lbrace (E_i)_\{i\in I\}\rbrace $ can be defined. We give conditions for $\lambda \lbrace (E_i)_\{i\in I\}\rbrace $ to be quasi-barrelled, barrelled or locally complete.},
author = {Fernández, Ariel, Florencio, Miguel, Oliveros, J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {barrelled spaces; generalized sequences; barrelled spaces; generalized sequences},
language = {eng},
number = {3},
pages = {459-465},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Barrelledness of generalized sums of normed spaces},
url = {http://eudml.org/doc/30576},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Fernández, Ariel
AU - Florencio, Miguel
AU - Oliveros, J.
TI - Barrelledness of generalized sums of normed spaces
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 459
EP - 465
AB - Let $(E_{i})_{i\in I}$ be a family of normed spaces and $\lambda $ a space of scalar generalized sequences. The $\lambda $-sum of the family $(E_{i})_{i\in I}$ of spaces is \[ \lambda \lbrace (E_{i})_{i\in I}\rbrace :=\lbrace (x_{i})_{i\in I},x_{i}\in E_{i}, \quad \text{and}\quad (\Vert x_{i}\Vert )_{i\in I}\in \lambda \rbrace . \] Starting from the topology on $\lambda $ and the norm topology on each $E_i,$ a natural topology on $\lambda \lbrace (E_i)_{i\in I}\rbrace $ can be defined. We give conditions for $\lambda \lbrace (E_i)_{i\in I}\rbrace $ to be quasi-barrelled, barrelled or locally complete.
LA - eng
KW - barrelled spaces; generalized sequences; barrelled spaces; generalized sequences
UR - http://eudml.org/doc/30576
ER -

References

top
  1. 10.1007/BF01194241, Arch. Math. (Basel) 60 (1993), 73–78. (1993) MR1193096DOI10.1007/BF01194241
  2. 10.1007/BF03322300, Results Math.  23 (1993), 242–250. (1993) MR1215213DOI10.1007/BF03322300
  3. 10.1017/S0017089500030548, Glasgow Math. J.  36 (1994), 57–69. (1994) MR1260818DOI10.1017/S0017089500030548
  4. Barrelled function spaces, Progress in Functional Analysis, K.D. Bierstedt et al. (eds.), North-Holland Math. Studies, Elsevier/North-Holland, Amsterdam, Oxford, New York and Tokyo, 1992, pp. 191–199. (1992) MR1150746
  5. On the barrelledness of spaces of bounded vector functions, Arch. Math. (Basel) 63 (1994), 449–458. (1994) MR1300741
  6. Barrelledness in λ -sums of normed spaces, Simon Stevin 63 (1989), 209–217. (1989) MR1061568
  7. Locally Convex Spaces, B.G. Teubner. Stuttgart, 1981. (1981) Zbl0466.46001MR0632257
  8. On the barrelledness of p -direct sums of seminormed spaces for 1 p , Arch. Math. (Basel) 62 (1994), 331–334. (1994) MR1264704
  9. Topological Vector Spaces I, Springer-Verlag, Berlin, Heidelberg and New York, 1969. (1969) MR0248498
  10. 10.1007/BF01171437, Manuscripta Math. 14 (1974), 107–121. (1974) MR0367612DOI10.1007/BF01171437
  11. Barrelled Locally Convex Spaces, North-Holland Math. Studies, North-Holland, Amsterdam, New York, Oxford and Tokyo, 1987. (1987) MR0880207
  12. 10.2140/pjm.1973.46.487, Pacific J. Math. 46 (1973), . (1973) Zbl0263.46009MR0328544DOI10.2140/pjm.1973.46.487

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.