Periodic problems and problems with discontinuities for nonlinear parabolic equations

Tiziana Cardinali; Nikolaos S. Papageorgiou

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 3, page 467-497
  • ISSN: 0011-4642

Abstract

top
In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact R δ -set in ( C T , L 2 ( Z ) ) .

How to cite

top

Cardinali, Tiziana, and Papageorgiou, Nikolaos S.. "Periodic problems and problems with discontinuities for nonlinear parabolic equations." Czechoslovak Mathematical Journal 50.3 (2000): 467-497. <http://eudml.org/doc/30577>.

@article{Cardinali2000,
abstract = {In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact $R_\{\delta \}$-set in $(CT,L^2(Z))$.},
author = {Cardinali, Tiziana, Papageorgiou, Nikolaos S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudomonotone operator; $L$-pseudomonotonicity; operator of type $(S)_\{+\}$; operator of type $L$-$(S)_\{+\}$; coercive operator; surjective operator; evolution triple; compact embedding; multifunction; upper solution; lower solution; extremal solution; $R_\{\delta \}$-set; pseudomonotone operator; -pseudomonotonicity; operator of type ; operator of type -; coercive operator; surjective operator; evolution triple; compact embedding},
language = {eng},
number = {3},
pages = {467-497},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic problems and problems with discontinuities for nonlinear parabolic equations},
url = {http://eudml.org/doc/30577},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Cardinali, Tiziana
AU - Papageorgiou, Nikolaos S.
TI - Periodic problems and problems with discontinuities for nonlinear parabolic equations
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 467
EP - 497
AB - In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact $R_{\delta }$-set in $(CT,L^2(Z))$.
LA - eng
KW - pseudomonotone operator; $L$-pseudomonotonicity; operator of type $(S)_{+}$; operator of type $L$-$(S)_{+}$; coercive operator; surjective operator; evolution triple; compact embedding; multifunction; upper solution; lower solution; extremal solution; $R_{\delta }$-set; pseudomonotone operator; -pseudomonotonicity; operator of type ; operator of type -; coercive operator; surjective operator; evolution triple; compact embedding
UR - http://eudml.org/doc/30577
ER -

References

top
  1. Superposition Operators, Cambridge Univ. Press, Cambridge, U.K., 1990. (1990) MR1066204
  2. Real Analysis and Probability, Academic Press, New York, 1972. (1972) MR0435320
  3. 10.4171/ZAA/855, Z. Anal. Anwendungen 17 (1998), 859–875. (1998) MR1669909DOI10.4171/ZAA/855
  4. 10.1016/0362-546X(85)90029-X, Nonlinear Anal. 9 (1985), 1183–1187. (1985) MR0813652DOI10.1016/0362-546X(85)90029-X
  5. Operateurs Maximaux Monotones, North Holland, Amsterdam, 1973. (1973) Zbl0252.47055
  6. 10.1007/BF01300615, Monatsh. Math. 124 (1997), 119–131. (1997) MR1462858DOI10.1007/BF01300615
  7. 10.1002/cpa.3160330203, Comm. Pure Appl. Math. 33 (1980), 117–146. (1980) MR0562547DOI10.1002/cpa.3160330203
  8. Optimization and Nonsmooth Analysis, Wiley, New York, 1983. (1983) Zbl0582.49001MR0709590
  9. 10.1016/0022-247X(85)90126-X, J. Math. Anal. Appl. 106 (1985), 1–18. (1985) MR0780314DOI10.1016/0022-247X(85)90126-X
  10. On the solution set for differential inclusions, Bull. Polish Acad. Sci. 33 (1985), 17–23. (1985) 
  11. 10.2140/pjm.1986.123.9, Pacific J. Math. 123 (1986), 9–31. (1986) MR0834135DOI10.2140/pjm.1986.123.9
  12. 10.1007/BF02760403, Israel J. Math. 29 (1978), 92–104. (1978) MR0492636DOI10.1007/BF02760403
  13. Vector Measures, Math. Surveys Monogr. 15, AMS XIII, Providence, RI. (1977). (1977) MR0453964
  14. 10.1016/0362-546X(91)90106-B, Nonlinear Anal. 16 (1991), 1053–1056. (1991) Zbl0736.35060MR1107003DOI10.1016/0362-546X(91)90106-B
  15. Differential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988. (1988) MR1028776
  16. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. (1977) MR0473443
  17. 10.1080/00036819308840206, Appl. Anal. 51 (1993), 115–127. (1993) MR1278995DOI10.1080/00036819308840206
  18. Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker Inc., New York, 1994. (1994) MR1280028
  19. 10.1090/S0002-9939-1994-1174494-8, Proc. Amer. Math. Soc. 120 (1994), 185–192. (1994) Zbl0795.34051MR1174494DOI10.1090/S0002-9939-1994-1174494-8
  20. 10.1006/jdeq.1994.1013, J. Differential Equations 107 (1994), 280–289. (1994) MR1264523DOI10.1006/jdeq.1994.1013
  21. 10.4064/fm-64-1-91-97, Fund. Math. 64 (1969), 91–97. (1969) Zbl0174.25804MR0253303DOI10.4064/fm-64-1-91-97
  22. Kneser’s property for u t = Δ u + u , Keio Math. Seminar Reports 3 (1978), 45–48. (1978) MR0510129
  23. Theory of Correspondences, Wiley, New York, 1984. (1984) MR0752692
  24. Function Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1977. (1977) MR0482102
  25. Topology II, Academic Press, New York, 1968. (1968) 
  26. Degre topologique pour certaines couples de fonctions et applications aux equations differentielles multivoques, C. R. Acad. Sci., Paris, Ser. A 283 (1976), 163–166. (1976) MR0436196
  27. Quelques Methodes de Resolutions des Problemes aux Limites Non-Lineaires, Dunod, Paris, 1969. (1969) MR0259693
  28. 10.1155/S0161171287000516, Internat. J. Math. Math. Sci. 10 (1987), 433–442. (1987) Zbl0619.28009MR0896595DOI10.1155/S0161171287000516
  29. On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), 437–464. (1987) Zbl0634.28005MR0914749
  30. 10.1006/jmaa.1994.1391, J. Math. Anal. Appl. 187 (1994), 809–825. (1994) Zbl0814.28005MR1298822DOI10.1006/jmaa.1994.1391
  31. 10.1006/jmaa.1997.5208, J. Math. Anal. Appl 205 (1997), 434–453. (1997) Zbl0901.35043MR1428358DOI10.1006/jmaa.1997.5208
  32. Existence and strong relaxation theorems for nonlinear evolution inclusions, Yokohama Math. J. 43 (1995), 73–88. (1995) MR1414183
  33. Existence, comportement à l’infini et stabilité dans certains problèmes quasilinéaires elliptiques et paraboliques d’ordre 2, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), 89–119. (1976) Zbl0331.35027MR0399654
  34. 10.1090/S0002-9939-1977-0442453-6, Proc. Amer. Math. Soc. 64 (1977), 277–282. (1977) Zbl0413.35031MR0442453DOI10.1090/S0002-9939-1977-0442453-6
  35. 10.1512/iumj.1972.21.21079, Indiana Univ. Math. J. 21 (1972), 979–1000. (1972) Zbl0223.35038MR0299921DOI10.1512/iumj.1972.21.21079
  36. 10.1016/0022-0396(71)90027-1, J. Differential Equations 9 (1971), 608–618. (1971) Zbl0227.47043MR0300172DOI10.1016/0022-0396(71)90027-1
  37. 10.1090/S0002-9939-1990-1015686-4, Proc. Amer. Math. Soc. 109 (1990), 653–661. (1990) Zbl0701.34074MR1015686DOI10.1090/S0002-9939-1990-1015686-4
  38. Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York, 1990. (1990) Zbl0684.47029MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.