Periodic problems and problems with discontinuities for nonlinear parabolic equations
Tiziana Cardinali; Nikolaos S. Papageorgiou
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 3, page 467-497
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCardinali, Tiziana, and Papageorgiou, Nikolaos S.. "Periodic problems and problems with discontinuities for nonlinear parabolic equations." Czechoslovak Mathematical Journal 50.3 (2000): 467-497. <http://eudml.org/doc/30577>.
@article{Cardinali2000,
abstract = {In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact $R_\{\delta \}$-set in $(CT,L^2(Z))$.},
author = {Cardinali, Tiziana, Papageorgiou, Nikolaos S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudomonotone operator; $L$-pseudomonotonicity; operator of type $(S)_\{+\}$; operator of type $L$-$(S)_\{+\}$; coercive operator; surjective operator; evolution triple; compact embedding; multifunction; upper solution; lower solution; extremal solution; $R_\{\delta \}$-set; pseudomonotone operator; -pseudomonotonicity; operator of type ; operator of type -; coercive operator; surjective operator; evolution triple; compact embedding},
language = {eng},
number = {3},
pages = {467-497},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic problems and problems with discontinuities for nonlinear parabolic equations},
url = {http://eudml.org/doc/30577},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Cardinali, Tiziana
AU - Papageorgiou, Nikolaos S.
TI - Periodic problems and problems with discontinuities for nonlinear parabolic equations
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 467
EP - 497
AB - In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact $R_{\delta }$-set in $(CT,L^2(Z))$.
LA - eng
KW - pseudomonotone operator; $L$-pseudomonotonicity; operator of type $(S)_{+}$; operator of type $L$-$(S)_{+}$; coercive operator; surjective operator; evolution triple; compact embedding; multifunction; upper solution; lower solution; extremal solution; $R_{\delta }$-set; pseudomonotone operator; -pseudomonotonicity; operator of type ; operator of type -; coercive operator; surjective operator; evolution triple; compact embedding
UR - http://eudml.org/doc/30577
ER -
References
top- Superposition Operators, Cambridge Univ. Press, Cambridge, U.K., 1990. (1990) MR1066204
- Real Analysis and Probability, Academic Press, New York, 1972. (1972) MR0435320
- 10.4171/ZAA/855, Z. Anal. Anwendungen 17 (1998), 859–875. (1998) MR1669909DOI10.4171/ZAA/855
- 10.1016/0362-546X(85)90029-X, Nonlinear Anal. 9 (1985), 1183–1187. (1985) MR0813652DOI10.1016/0362-546X(85)90029-X
- Operateurs Maximaux Monotones, North Holland, Amsterdam, 1973. (1973) Zbl0252.47055
- 10.1007/BF01300615, Monatsh. Math. 124 (1997), 119–131. (1997) MR1462858DOI10.1007/BF01300615
- 10.1002/cpa.3160330203, Comm. Pure Appl. Math. 33 (1980), 117–146. (1980) MR0562547DOI10.1002/cpa.3160330203
- Optimization and Nonsmooth Analysis, Wiley, New York, 1983. (1983) Zbl0582.49001MR0709590
- 10.1016/0022-247X(85)90126-X, J. Math. Anal. Appl. 106 (1985), 1–18. (1985) MR0780314DOI10.1016/0022-247X(85)90126-X
- On the solution set for differential inclusions, Bull. Polish Acad. Sci. 33 (1985), 17–23. (1985)
- 10.2140/pjm.1986.123.9, Pacific J. Math. 123 (1986), 9–31. (1986) MR0834135DOI10.2140/pjm.1986.123.9
- 10.1007/BF02760403, Israel J. Math. 29 (1978), 92–104. (1978) MR0492636DOI10.1007/BF02760403
- Vector Measures, Math. Surveys Monogr. 15, AMS XIII, Providence, RI. (1977). (1977) MR0453964
- 10.1016/0362-546X(91)90106-B, Nonlinear Anal. 16 (1991), 1053–1056. (1991) Zbl0736.35060MR1107003DOI10.1016/0362-546X(91)90106-B
- Differential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988. (1988) MR1028776
- Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. (1977) MR0473443
- 10.1080/00036819308840206, Appl. Anal. 51 (1993), 115–127. (1993) MR1278995DOI10.1080/00036819308840206
- Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker Inc., New York, 1994. (1994) MR1280028
- 10.1090/S0002-9939-1994-1174494-8, Proc. Amer. Math. Soc. 120 (1994), 185–192. (1994) Zbl0795.34051MR1174494DOI10.1090/S0002-9939-1994-1174494-8
- 10.1006/jdeq.1994.1013, J. Differential Equations 107 (1994), 280–289. (1994) MR1264523DOI10.1006/jdeq.1994.1013
- 10.4064/fm-64-1-91-97, Fund. Math. 64 (1969), 91–97. (1969) Zbl0174.25804MR0253303DOI10.4064/fm-64-1-91-97
- Kneser’s property for , Keio Math. Seminar Reports 3 (1978), 45–48. (1978) MR0510129
- Theory of Correspondences, Wiley, New York, 1984. (1984) MR0752692
- Function Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1977. (1977) MR0482102
- Topology II, Academic Press, New York, 1968. (1968)
- Degre topologique pour certaines couples de fonctions et applications aux equations differentielles multivoques, C. R. Acad. Sci., Paris, Ser. A 283 (1976), 163–166. (1976) MR0436196
- Quelques Methodes de Resolutions des Problemes aux Limites Non-Lineaires, Dunod, Paris, 1969. (1969) MR0259693
- 10.1155/S0161171287000516, Internat. J. Math. Math. Sci. 10 (1987), 433–442. (1987) Zbl0619.28009MR0896595DOI10.1155/S0161171287000516
- On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), 437–464. (1987) Zbl0634.28005MR0914749
- 10.1006/jmaa.1994.1391, J. Math. Anal. Appl. 187 (1994), 809–825. (1994) Zbl0814.28005MR1298822DOI10.1006/jmaa.1994.1391
- 10.1006/jmaa.1997.5208, J. Math. Anal. Appl 205 (1997), 434–453. (1997) Zbl0901.35043MR1428358DOI10.1006/jmaa.1997.5208
- Existence and strong relaxation theorems for nonlinear evolution inclusions, Yokohama Math. J. 43 (1995), 73–88. (1995) MR1414183
- Existence, comportement à l’infini et stabilité dans certains problèmes quasilinéaires elliptiques et paraboliques d’ordre 2, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), 89–119. (1976) Zbl0331.35027MR0399654
- 10.1090/S0002-9939-1977-0442453-6, Proc. Amer. Math. Soc. 64 (1977), 277–282. (1977) Zbl0413.35031MR0442453DOI10.1090/S0002-9939-1977-0442453-6
- 10.1512/iumj.1972.21.21079, Indiana Univ. Math. J. 21 (1972), 979–1000. (1972) Zbl0223.35038MR0299921DOI10.1512/iumj.1972.21.21079
- 10.1016/0022-0396(71)90027-1, J. Differential Equations 9 (1971), 608–618. (1971) Zbl0227.47043MR0300172DOI10.1016/0022-0396(71)90027-1
- 10.1090/S0002-9939-1990-1015686-4, Proc. Amer. Math. Soc. 109 (1990), 653–661. (1990) Zbl0701.34074MR1015686DOI10.1090/S0002-9939-1990-1015686-4
- Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York, 1990. (1990) Zbl0684.47029MR0816732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.