On nonoscillation of canonical or noncanonical disconjugate functional equations
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 3, page 627-639
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSingh, Bhagat. "On nonoscillation of canonical or noncanonical disconjugate functional equations." Czechoslovak Mathematical Journal 50.3 (2000): 627-639. <http://eudml.org/doc/30589>.
@article{Singh2000,
abstract = {Qualitative comparison of the nonoscillatory behavior of the equations \[ L\_ny(t) + H(t,y(t)) = 0 \]
and \[ L\_ny(t) + H(t,y(g(t))) = 0 \]
is sought by way of finding different nonoscillation criteria for the above equations. $L_n$ is a disconjugate operator of the form \[ L\_n = \frac\{1\}\{p\_n(t)\} \frac\{\mathrm \{d\}\{\}\}\{\mathrm \{d\}t\} \frac\{1\}\{p\_\{n-1\}(t)\} \frac\{\mathrm \{d\}\{\}\}\{\mathrm \{d\}t\} \ldots \frac\{\mathrm \{d\}\{\}\}\{\mathrm \{d\}t\} \frac\{\cdot \}\{p\_0(t)\}. \]
Both canonical and noncanonical forms of $L_n$ have been studied.},
author = {Singh, Bhagat},
journal = {Czechoslovak Mathematical Journal},
keywords = {canonical; noncanonical; oscillatory; nonoscillatory; principal system; canonical; noncanonical; oscillatory; nonoscillatory; principal system},
language = {eng},
number = {3},
pages = {627-639},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On nonoscillation of canonical or noncanonical disconjugate functional equations},
url = {http://eudml.org/doc/30589},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Singh, Bhagat
TI - On nonoscillation of canonical or noncanonical disconjugate functional equations
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 627
EP - 639
AB - Qualitative comparison of the nonoscillatory behavior of the equations \[ L_ny(t) + H(t,y(t)) = 0 \]
and \[ L_ny(t) + H(t,y(g(t))) = 0 \]
is sought by way of finding different nonoscillation criteria for the above equations. $L_n$ is a disconjugate operator of the form \[ L_n = \frac{1}{p_n(t)} \frac{\mathrm {d}{}}{\mathrm {d}t} \frac{1}{p_{n-1}(t)} \frac{\mathrm {d}{}}{\mathrm {d}t} \ldots \frac{\mathrm {d}{}}{\mathrm {d}t} \frac{\cdot }{p_0(t)}. \]
Both canonical and noncanonical forms of $L_n$ have been studied.
LA - eng
KW - canonical; noncanonical; oscillatory; nonoscillatory; principal system; canonical; noncanonical; oscillatory; nonoscillatory; principal system
UR - http://eudml.org/doc/30589
ER -
References
top- A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation, J. Math. Phys. Sci. 7 (1973), 163–170. (1973) MR0350151
- 10.32917/hmj/1206128503, Hiroshima Math. J. 22 (1992), 561–571. (1992) MR1194051DOI10.32917/hmj/1206128503
- 10.1016/0022-0396(70)90093-8, J. Differential Equations 7 (1970), 454–458. (1970) MR0257465DOI10.1016/0022-0396(70)90093-8
- Oscillatory and asymptotic behavior of differential equations with deviating arguments, Proc. Roy. Soc. Edinburgh 81 (1978), 195–210. (1978) MR0516413
- 10.2140/pjm.1977.70.221, Pacific J. Math. 70 (1977), 221–242. (1977) MR0466876DOI10.2140/pjm.1977.70.221
- 10.1137/0509078, SIAM J. Math. Anal. 9 (1978), 956–966. (1978) MR0508836DOI10.1137/0509078
- 10.1016/0022-247X(81)90131-1, J. Math. Anal. Appl. 83 (1981), 395–407. (1981) MR0641341DOI10.1016/0022-247X(81)90131-1
- 10.32917/hmj/1206135651, Hiroshima Math. J. 7 (1977), 657–665. (1977) Zbl0411.34042MR0499608DOI10.32917/hmj/1206135651
- 10.32917/hmj/1206135207, Hiroshima Math. J. 9 (1979), 297–302. (1979) Zbl0409.34070MR0529336DOI10.32917/hmj/1206135207
- On the Oscillation of an elliptic equation of fourth order, Tamkang J. Math. 27 (1996), 151–159. (1996) Zbl0857.35011MR1407010
- 10.1137/0507005, SIAM J. Math. Anal. 7 (1976), 37–44. (1976) Zbl0321.34058MR0425308DOI10.1137/0507005
- Slowly oscillating and nonoscillating trajectories in second order retarded sublinear equations, Math. Japon. 24 (1980), 617–623. (1980) Zbl0429.34063MR0565547
- 10.1016/0362-546X(78)90066-4, Nonlinear Anal. 2 (1978), 197–210. (1978) MR0512283DOI10.1016/0362-546X(78)90066-4
- Oscillation theorems for second order differential equations with functional arguments, Proc. Amer. Math. Soc. 30 (1972), 199–201. (1972) Zbl0235.34141MR0285789
- 10.1090/S0002-9947-1974-0330632-X, Trans. Amer. Math. Soc. 189 (1974), 319–327. (1974) MR0330632DOI10.1090/S0002-9947-1974-0330632-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.