Commutativity of rings through a Streb’s result
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 4, page 791-801
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKhan, Moharram A.. "Commutativity of rings through a Streb’s result." Czechoslovak Mathematical Journal 50.4 (2000): 791-801. <http://eudml.org/doc/30600>.
@article{Khan2000,
abstract = {In this paper we investigate commutativity of rings with unity satisfying any one of the properties: \[ \begin\{aligned\} &\lbrace 1- g(yx^\{m\}) \rbrace \ [yx^\{m\} - x^\{r\} f (yx^\{m\}) \ x^s, x] \lbrace 1- h (yx^\{m\}) \rbrace = 0, \\&\lbrace 1- g(yx^\{m\}) \rbrace \ [x^\{m\} y - x^\{r\} f (yx^\{m\}) x^\{s\}, x] \lbrace 1- h (yx^\{m\}) \rbrace = 0, \\&y^\{t\} [x,y^\{n\}] = g (x) [f (x), y] h (x)\ \{\mathrm \{a\}nd\} \ \ [x,y^\{n\}] \ y^\{t\} = g (x) [f (x), y] h (x) \end\{aligned\} \]
for some $f(X)$ in $X^\{2\} \{\mathbb \{Z\}\}[X]$ and $g(X)$, $ h(X)$ in $\{\mathbb \{Z\}\} [X]$, where $m \ge 0$, $ r \ge 0$, $ s \ge 0$, $ n > 0$, $ t > 0$ are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements $x$ and $y$ for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently.},
author = {Khan, Moharram A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutators; division rings; factorsubrings; polynomial identities; torsion-free rings; commutator constraints; division rings; factor subrings; polynomial identities; torsion-free rings; commutativity theorems},
language = {eng},
number = {4},
pages = {791-801},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutativity of rings through a Streb’s result},
url = {http://eudml.org/doc/30600},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Khan, Moharram A.
TI - Commutativity of rings through a Streb’s result
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 791
EP - 801
AB - In this paper we investigate commutativity of rings with unity satisfying any one of the properties: \[ \begin{aligned} &\lbrace 1- g(yx^{m}) \rbrace \ [yx^{m} - x^{r} f (yx^{m}) \ x^s, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\&\lbrace 1- g(yx^{m}) \rbrace \ [x^{m} y - x^{r} f (yx^{m}) x^{s}, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\&y^{t} [x,y^{n}] = g (x) [f (x), y] h (x)\ {\mathrm {a}nd} \ \ [x,y^{n}] \ y^{t} = g (x) [f (x), y] h (x) \end{aligned} \]
for some $f(X)$ in $X^{2} {\mathbb {Z}}[X]$ and $g(X)$, $ h(X)$ in ${\mathbb {Z}} [X]$, where $m \ge 0$, $ r \ge 0$, $ s \ge 0$, $ n > 0$, $ t > 0$ are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements $x$ and $y$ for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently.
LA - eng
KW - commutators; division rings; factorsubrings; polynomial identities; torsion-free rings; commutator constraints; division rings; factor subrings; polynomial identities; torsion-free rings; commutativity theorems
UR - http://eudml.org/doc/30600
ER -
References
top- Two commutativity theorems for rings, Rad. Mat. 3 (1987), 255–260. (1987) MR0931981
- 10.1090/S0002-9939-1976-0414636-1, Proc. Amer. Math. Soc. 59 (1976), 211–216. (1976) Zbl0341.16020MR0414636DOI10.1090/S0002-9939-1976-0414636-1
- 10.4153/CJM-1955-044-2, Canad. J. Math. 7 (1955), 411–412. (1955) MR0071405DOI10.4153/CJM-1955-044-2
- A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982)), 267–268. (1982)) Zbl0481.16013MR0655230
- Commutativity of right -unital rings with polynomial constraints, J. Inst. Math. Comput. Sci. 12 (1999), 47–51. (1999) Zbl0935.16023MR1693433
- Chacron’s condition and commutativity theorems, Math. J. Okayama Univ. 31 (1989), 101–120. (1989) MR1043353
- 10.1155/S0161171284000569, Internat. J. Math. Math. Sci. 7 (1984), 513–517. (1984) Zbl0561.16013MR0771600DOI10.1155/S0161171284000569
- 10.2307/2322707, Amer. Math. Monthly, 93 (1986), 121–122. (1986) MR0827587DOI10.2307/2322707
- Zur Struktur nichtkommutativer Ringe, Math. J. Okayama Univ. 31 (1989), 135–140. (1989) Zbl0702.16022MR1043356
- 10.1007/BF03323267, Results Math. 11 (1987), 186–192. (1987) MR0880201DOI10.1007/BF03323267
- 10.4153/CMB-1984-071-x, Canad. Math. Bull. 72 (1984), 456–460. (1984) Zbl0545.16015MR0763045DOI10.4153/CMB-1984-071-x
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.