Commutativity of rings with polynomial constraints
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 2, page 401-413
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKhan, Moharram A.. "Commutativity of rings with polynomial constraints." Czechoslovak Mathematical Journal 52.2 (2002): 401-413. <http://eudml.org/doc/30710>.
@article{Khan2002,
abstract = {Let $p$, $ q$ and $r$ be fixed non-negative integers. In this note, it is shown that if $R$ is left (right) $s$-unital ring satisfying $[f(x^py^q) - x^ry, x] = 0$ ($[f(x^py^q) - yx^r, x] = 0$, respectively) where $f(\lambda ) \in \{\lambda \}^2\{\mathbb \{Z\}\}[\lambda ]$, then $R$ is commutative. Moreover, commutativity of $R$ is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.},
author = {Khan, Moharram A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {automorphism; commutativity; local ring; polynomial identity; $s$-unital ring; automorphisms; commutativity theorems; local rings; polynomial identities; -unital rings; polynomial constraints},
language = {eng},
number = {2},
pages = {401-413},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutativity of rings with polynomial constraints},
url = {http://eudml.org/doc/30710},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Khan, Moharram A.
TI - Commutativity of rings with polynomial constraints
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 401
EP - 413
AB - Let $p$, $ q$ and $r$ be fixed non-negative integers. In this note, it is shown that if $R$ is left (right) $s$-unital ring satisfying $[f(x^py^q) - x^ry, x] = 0$ ($[f(x^py^q) - yx^r, x] = 0$, respectively) where $f(\lambda ) \in {\lambda }^2{\mathbb {Z}}[\lambda ]$, then $R$ is commutative. Moreover, commutativity of $R$ is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.
LA - eng
KW - automorphism; commutativity; local ring; polynomial identity; $s$-unital ring; automorphisms; commutativity theorems; local rings; polynomial identities; -unital rings; polynomial constraints
UR - http://eudml.org/doc/30710
ER -
References
top- 10.1023/A:1022197800695, Georgian Math. J. 5 (1998), 301–314. (1998) MR1639061DOI10.1023/A:1022197800695
- A commutativity theorem for one sided -unital rings, Pure Math. Appl. 1 (1990), 109–116. (1990) MR1095008
- Two commutativity theorems for rings, Rad. Mat. 3 (1987), 255–260. (1987) MR0931981
- 10.4153/CMB-1978-070-x, Canad. Math. Bull. 21 (1978), 399–404. (1978) Zbl0403.16024MR0523579DOI10.4153/CMB-1978-070-x
- 10.1007/BF01228168, Arch. Math. 24 (1973), 34-38. (1973) Zbl0251.16021MR0320090DOI10.1007/BF01228168
- 10.1307/mmj/1028998511, Michigan Math. J. 8 (1961), 29–32. (1961) Zbl0096.25701MR0118741DOI10.1307/mmj/1028998511
- 10.4153/CJM-1955-044-2, Canad. J. Math. 7 (1955), 411–412. (1955) MR0071405DOI10.4153/CJM-1955-044-2
- Some polynomial identities and commutativity of -unital rings, Math. J. Okayama Univ. 24 (1982), 7–13. (1982) MR0660049
- Structure of Rings, Amer. Math. Soc. Colloq. Publ., Providence, 1956. (1956) Zbl0073.02002MR0081264
- A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982), 267–268. (1982) Zbl0481.16013MR0655230
- 10.1023/A:1022464612374, Czecholoslovak Math. J. 50 (2000), 791–801. (2000) Zbl1079.16504MR1792970DOI10.1023/A:1022464612374
- On commutativity of rings, Rad. Mat. 6 (1990), 303–311. (1990) MR1096712
- Chacron’s condition and commutativity theorems, Math. J. Okayama Univ. 31 (1989), 101–120. (1989) MR1043353
- 10.1007/BF03322621, Resultate der Math. 15 (1989), 335–342. (1989) Zbl0678.16027MR0997069DOI10.1007/BF03322621
- 10.4153/CMB-1979-055-9, Canad. Math. Bull. 22 (1979), 419–423. (1979) MR0563755DOI10.4153/CMB-1979-055-9
- A commutativity theorem for rings, Math. Japon. 29 (1984), 371–373. (1984) Zbl0548.16029MR0752233
- Rings satisfying polynomial constraints, J. Math. Soc. Japan 25 (1973), 115–124. (1973) MR0313312
- Zur Struktur nichtkommutativer Ringe, Math. J. Okayama Univ. 31 (1989), 135–140. (1989) Zbl0702.16022MR1043356
- Über einen Satz von Herstein und Nakayama, Rend. Sem. Mat. Univ. Podova 64 (1981), 151–171. (1981) Zbl0474.16024MR0636633
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.