On some classes of modules
Gonca Güngöroglu; Harmanci, Abdullah
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 4, page 839-846
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGüngöroglu, Gonca, and Harmanci, Abdullah. "On some classes of modules." Czechoslovak Mathematical Journal 50.4 (2000): 839-846. <http://eudml.org/doc/30603>.
@article{Güngöroglu2000,
abstract = {The aim of this paper is to investigate quasi-corational, comonoform, copolyform and $\alpha $-(co)atomic modules. It is proved that for an ordinal $\alpha $ a right $R$-module $M$ is $\alpha $-atomic if and only if it is $\alpha $-coatomic. And it is also shown that an $\alpha $-atomic module $M$ is quasi-projective if and only if $M$ is quasi-corationally complete. Some other results are developed.},
author = {Güngöroglu, Gonca, Harmanci, Abdullah},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi-corational module; copolyform module; $\alpha $-coatomic module; quasi-corational modules; copolyform modules; coatomic modules},
language = {eng},
number = {4},
pages = {839-846},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some classes of modules},
url = {http://eudml.org/doc/30603},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Güngöroglu, Gonca
AU - Harmanci, Abdullah
TI - On some classes of modules
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 839
EP - 846
AB - The aim of this paper is to investigate quasi-corational, comonoform, copolyform and $\alpha $-(co)atomic modules. It is proved that for an ordinal $\alpha $ a right $R$-module $M$ is $\alpha $-atomic if and only if it is $\alpha $-coatomic. And it is also shown that an $\alpha $-atomic module $M$ is quasi-projective if and only if $M$ is quasi-corationally complete. Some other results are developed.
LA - eng
KW - quasi-corational module; copolyform module; $\alpha $-coatomic module; quasi-corational modules; copolyform modules; coatomic modules
UR - http://eudml.org/doc/30603
ER -
References
top- Dual relative Krull dimension of modules over commutative rings. Abelian groups, Math. Appl. (East European Ser.) 343 (1995), 1–15. (1995) MR1378184
- Rings and Categories, Springer-Verlag, New York, 1973. (1973)
- 10.4153/CJM-1969-047-0, Canad. J. Math. 21 (1968), 430–446. (1968) MR0257141DOI10.4153/CJM-1969-047-0
- Modules and Rings, Academic Press, 1982. (1982) Zbl0523.16001MR0667346
- 10.1093/qmath/41.4.419, Quart. J. Math. Oxford Ser. 2 41 (1990), 419–429. (1990) Zbl0724.13015MR1081104DOI10.1093/qmath/41.4.419
- Continuous and Discrete Modules, London Math. Soc. Lecture Notes 147, Cambridge Univ. Press, 1990. (1990) MR1084376
- Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337–372. (1983) Zbl0516.16015MR0706241
- 10.1093/qmath/26.1.269, Quart. J. Math. Oxford Ser. 3 26 (1975), 269–273. (1975) Zbl0311.13006MR0389884DOI10.1093/qmath/26.1.269
- ARRAY(0x9afdfe8), Lecture Notes in Math. vol. 246, Springer-Verlag, New York, 1992, pp. 617–661. (1992) MR0360717
- Foundations of Module and Ring Theory, Gordon and Breach. Reading, 1991. (1991) Zbl0746.16001MR1144522
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.