Linear extensions of orderings

Vítězslav Novák; Miroslav Novotný

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 4, page 853-864
  • ISSN: 0011-4642

Abstract

top
A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.

How to cite

top

Novák, Vítězslav, and Novotný, Miroslav. "Linear extensions of orderings." Czechoslovak Mathematical Journal 50.4 (2000): 853-864. <http://eudml.org/doc/30605>.

@article{Novák2000,
abstract = {A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.},
author = {Novák, Vítězslav, Novotný, Miroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {ordered set; linear extension; natural representation; lexicographic sum; dense subset; ordered set; linear extension; natural representation; lexicographic sum; dense subset},
language = {eng},
number = {4},
pages = {853-864},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear extensions of orderings},
url = {http://eudml.org/doc/30605},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Novák, Vítězslav
AU - Novotný, Miroslav
TI - Linear extensions of orderings
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 853
EP - 864
AB - A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.
LA - eng
KW - ordered set; linear extension; natural representation; lexicographic sum; dense subset; ordered set; linear extension; natural representation; lexicographic sum; dense subset
UR - http://eudml.org/doc/30605
ER -

References

top
  1. Lattice Theory, Providence, Rhode Island, 1967. (1967) Zbl0153.02501MR0227053
  2. 10.1090/S0002-9947-1945-0012262-4, Trans. Amer. Math. Soc. 58 (1945), 1–43. (1945) Zbl0060.05813MR0012262DOI10.1090/S0002-9947-1945-0012262-4
  3. Dimension two, fixed points nad dismantable ordered sets, Order 13 (1996), 245–253. (1996) MR1420398
  4. Grundzüge der Mengenlehre, Leipzig, 1914. (1914) 
  5. On the dimension of partially ordered sets, Sci. Rep. Kanazawa Univ. 1 (1951), 77–94. (1951) Zbl0200.00013MR0070681
  6. The dimension of the finite subsets of K , Order 13 (1996), 227–231. (1996) MR1420396
  7. Partitive sets and ordered chains, Rad Jugosl. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke 6 (302) (1957), 197–235. (1957) Zbl0147.26301MR0097328
  8. 10.4064/fm-38-1-233-237, Fund. Math. 38 (1951), 233–237. (1951) MR0048795DOI10.4064/fm-38-1-233-237
  9. Appendix, W. Sierpiński: Cardinal and Ordinal Numbers, Warszawa, 1958. (1958) 
  10. 10.4064/fm-39-1-53-64, Fund. Math. 39 (1952), 53–64. (1952) MR0056049DOI10.4064/fm-39-1-53-64
  11. On the well dimension of ordered sets, Czechoslovak Math. J. 19 (94) (1969), 1–16. (1969) MR0241325
  12. Über Erweiterungen geordneter Mengen, Arch. Math. (Brno) 9 (1973), 141–146. (1973) MR0354456
  13. 10.1023/A:1022523830353, Czechoslovak Math. J. 48 (123) (1998), 135–144. (1998) MR1614021DOI10.1023/A:1022523830353
  14. O representaci částečně uspořádaných množin posloupnostmi nul a jedniček (On representation of partially ordered sets by means of sequences of 0’s and 1’s), Čas. pěst. mat. 78 (1953), 61–64. (1953) 
  15. Bemerkung über die Darstellung teilweise geordneter Mengen, Spisy přír. fak. MU Brno 369 (1955), 451–458. (1955) MR0082958
  16. Ordered sets, Proc. NATO Adv. Study Inst. Banff (1981). (1981) Zbl0519.05017
  17. 10.4153/CJM-1981-093-9, Canad. J. Math. 33 (1981), 1245–1254. (1981) MR0638378DOI10.4153/CJM-1981-093-9
  18. Which countable ordered sets have a dense linear extension?, Math. Slovaca 46 (1996), 445–455. (1996) Zbl0890.06003MR1451035
  19. 10.1002/malq.19550010207, Z. Math. Logik Grundlagen Math. 1 (1955), 127–170. (1955) Zbl0065.03703MR0071488DOI10.1002/malq.19550010207
  20. 10.1007/BF01900297, Arch. Math. 7 (1956), 241–249. (1956) MR0084484DOI10.1007/BF01900297
  21. Dimenzija djelomično uredenih skupova pridruženih poligonima i poliedrima (Dimension of partially ordered sets connected with polygons and polyhedra), Period. Math.-Phys. Astron. 7 (1952), 169–182. (1952) MR0053495
  22. Cardinal and Ordinal Numbers, Warszawa, 1958. (1958) MR0095787
  23. 10.4064/fm-36-1-56-67, Fund. Math. 36 (1949), 56–67. (1949) DOI10.4064/fm-36-1-56-67
  24. Einführung in die Verbandstheorie, Leipzig, 1962. (1962) MR0138567
  25. 10.4064/fm-16-1-386-389, Fund. Math. 16 (1930), 386–389. (1930) DOI10.4064/fm-16-1-386-389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.