Linear extensions of orderings
Vítězslav Novák; Miroslav Novotný
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 4, page 853-864
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNovák, Vítězslav, and Novotný, Miroslav. "Linear extensions of orderings." Czechoslovak Mathematical Journal 50.4 (2000): 853-864. <http://eudml.org/doc/30605>.
@article{Novák2000,
abstract = {A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.},
author = {Novák, Vítězslav, Novotný, Miroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {ordered set; linear extension; natural representation; lexicographic sum; dense subset; ordered set; linear extension; natural representation; lexicographic sum; dense subset},
language = {eng},
number = {4},
pages = {853-864},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear extensions of orderings},
url = {http://eudml.org/doc/30605},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Novák, Vítězslav
AU - Novotný, Miroslav
TI - Linear extensions of orderings
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 853
EP - 864
AB - A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.
LA - eng
KW - ordered set; linear extension; natural representation; lexicographic sum; dense subset; ordered set; linear extension; natural representation; lexicographic sum; dense subset
UR - http://eudml.org/doc/30605
ER -
References
top- Lattice Theory, Providence, Rhode Island, 1967. (1967) Zbl0153.02501MR0227053
- 10.1090/S0002-9947-1945-0012262-4, Trans. Amer. Math. Soc. 58 (1945), 1–43. (1945) Zbl0060.05813MR0012262DOI10.1090/S0002-9947-1945-0012262-4
- Dimension two, fixed points nad dismantable ordered sets, Order 13 (1996), 245–253. (1996) MR1420398
- Grundzüge der Mengenlehre, Leipzig, 1914. (1914)
- On the dimension of partially ordered sets, Sci. Rep. Kanazawa Univ. 1 (1951), 77–94. (1951) Zbl0200.00013MR0070681
- The dimension of the finite subsets of , Order 13 (1996), 227–231. (1996) MR1420396
- Partitive sets and ordered chains, Rad Jugosl. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke 6 (302) (1957), 197–235. (1957) Zbl0147.26301MR0097328
- 10.4064/fm-38-1-233-237, Fund. Math. 38 (1951), 233–237. (1951) MR0048795DOI10.4064/fm-38-1-233-237
- Appendix, W. Sierpiński: Cardinal and Ordinal Numbers, Warszawa, 1958. (1958)
- 10.4064/fm-39-1-53-64, Fund. Math. 39 (1952), 53–64. (1952) MR0056049DOI10.4064/fm-39-1-53-64
- On the well dimension of ordered sets, Czechoslovak Math. J. 19 (94) (1969), 1–16. (1969) MR0241325
- Über Erweiterungen geordneter Mengen, Arch. Math. (Brno) 9 (1973), 141–146. (1973) MR0354456
- 10.1023/A:1022523830353, Czechoslovak Math. J. 48 (123) (1998), 135–144. (1998) MR1614021DOI10.1023/A:1022523830353
- O representaci částečně uspořádaných množin posloupnostmi nul a jedniček (On representation of partially ordered sets by means of sequences of 0’s and 1’s), Čas. pěst. mat. 78 (1953), 61–64. (1953)
- Bemerkung über die Darstellung teilweise geordneter Mengen, Spisy přír. fak. MU Brno 369 (1955), 451–458. (1955) MR0082958
- Ordered sets, Proc. NATO Adv. Study Inst. Banff (1981). (1981) Zbl0519.05017
- 10.4153/CJM-1981-093-9, Canad. J. Math. 33 (1981), 1245–1254. (1981) MR0638378DOI10.4153/CJM-1981-093-9
- Which countable ordered sets have a dense linear extension?, Math. Slovaca 46 (1996), 445–455. (1996) Zbl0890.06003MR1451035
- 10.1002/malq.19550010207, Z. Math. Logik Grundlagen Math. 1 (1955), 127–170. (1955) Zbl0065.03703MR0071488DOI10.1002/malq.19550010207
- 10.1007/BF01900297, Arch. Math. 7 (1956), 241–249. (1956) MR0084484DOI10.1007/BF01900297
- Dimenzija djelomično uredenih skupova pridruženih poligonima i poliedrima (Dimension of partially ordered sets connected with polygons and polyhedra), Period. Math.-Phys. Astron. 7 (1952), 169–182. (1952) MR0053495
- Cardinal and Ordinal Numbers, Warszawa, 1958. (1958) MR0095787
- 10.4064/fm-36-1-56-67, Fund. Math. 36 (1949), 56–67. (1949) DOI10.4064/fm-36-1-56-67
- Einführung in die Verbandstheorie, Leipzig, 1962. (1962) MR0138567
- 10.4064/fm-16-1-386-389, Fund. Math. 16 (1930), 386–389. (1930) DOI10.4064/fm-16-1-386-389
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.