Which countable ordered sets have a dense linear extension?

Aleksander Rutkowski

Mathematica Slovaca (1996)

  • Volume: 46, Issue: 5, page 445-455
  • ISSN: 0139-9918

How to cite

top

Rutkowski, Aleksander. "Which countable ordered sets have a dense linear extension?." Mathematica Slovaca 46.5 (1996): 445-455. <http://eudml.org/doc/34443>.

@article{Rutkowski1996,
author = {Rutkowski, Aleksander},
journal = {Mathematica Slovaca},
keywords = {partial order; linear order; linear extension; chain; density; -extension; rationals},
language = {eng},
number = {5},
pages = {445-455},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Which countable ordered sets have a dense linear extension?},
url = {http://eudml.org/doc/34443},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Rutkowski, Aleksander
TI - Which countable ordered sets have a dense linear extension?
JO - Mathematica Slovaca
PY - 1996
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 46
IS - 5
SP - 445
EP - 455
LA - eng
KW - partial order; linear order; linear extension; chain; density; -extension; rationals
UR - http://eudml.org/doc/34443
ER -

References

top
  1. BEHRENDT G., Automorphism groups of covering posets and of dense posets, Proc. Edinburgh Math. Soc. (2) 35 (1992), 115-120. (1992) Zbl0765.06003MR1150957
  2. BONNET R., Stratifications et extensions des genres de chaines dénombrables, C. R. Acad. Sci. Paris Ser. A 269 (1969), 880-882. (1969) Zbl0206.28001MR0252282
  3. BONNET R.-POUZET M., Extension et stratification d'ensembles disperses, C. R. Acad. Sci. Paris Ser. A 268 (1969), 1512-1515. (1969) Zbl0188.04203MR0242726
  4. BONNET R.-POUZET M., Linear extensions of ordered sets, In: Ordered Sets (I. Rival, od.), D. Reidel, Dordrecht, 1982, pp. 125-170. (1982) Zbl0499.06002MR0661293
  5. CANTOR G., Beiträge zur Begrundung der transfiniten Mengenlehre, Math. Ann. 46 (1895), 481-512. 
  6. DUSHNIK B.-MILLER E. W., Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. (1941) Zbl0025.31002MR0004862
  7. LOŠ J., Private communication, (1993). (1993) 
  8. PINUS A. G., On the existence of a-dimension of partial orderings, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1980), 32-36. (Russian) (1980) MR0582711
  9. PINUS A. G., On the uniqueness of some linear extensions of partial orderings, Siberian Math. J. 24 (1983), 131-137. (Russian) (1983) MR0713590
  10. PINUS A. G., On the least linear extensions of partial orderings, Z. Math. Logik Grundlag. Math. 33 (1987), 517-525. (Russian) (1987) MR0917259
  11. POUZET M.-RIVAL I., Which ordered sets have a complete linear extension?, Canad. J. Math. XXXIII (1981), 1245-1254. (1981) Zbl0479.06001MR0638378
  12. SKILTON D. K., Embedding posets in the integers, Order 1 (1985), 229-233. (1985) MR0779388
  13. SZPILRAJN E. (MARCZEWSKI), Sur L'extension de Vordre partiel, Fund. Math. 16 (1930), 386-389. (1930) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.