Some topological properties of ω -covering sets

Andrzej Nowik

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 4, page 865-877
  • ISSN: 0011-4642

Abstract

top
We prove the following theorems: There exists an ω -covering with the property s 0 . Under c o v ( 𝒩 ) = there exists X such that B o r [ B X is not an ω -covering or X B is not an ω -covering]. Also we characterize the property of being an ω -covering.

How to cite

top

Nowik, Andrzej. "Some topological properties of $\omega $-covering sets." Czechoslovak Mathematical Journal 50.4 (2000): 865-877. <http://eudml.org/doc/30606>.

@article{Nowik2000,
abstract = {We prove the following theorems: There exists an $\{\omega \}$-covering with the property $s_0$. Under $\mathop \{\mathrm \{c\}ov\}\nolimits (\{\mathcal \{N\}\}) = $ there exists $X$ such that $ \forall _\{B \in \{\mathcal \{B\}\}or\} [B\cap X$ is not an $\{\omega \}$-covering or $X\setminus B$ is not an $\{\omega \}$-covering]. Also we characterize the property of being an $\{\omega \}$-covering.},
author = {Nowik, Andrzej},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\{\omega \}$-covering set; $\{\mathcal \{E\}\}$; hereditarily nonparadoxical set; -covering set; ; hereditarily nonparadoxical set},
language = {eng},
number = {4},
pages = {865-877},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some topological properties of $\omega $-covering sets},
url = {http://eudml.org/doc/30606},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Nowik, Andrzej
TI - Some topological properties of $\omega $-covering sets
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 865
EP - 877
AB - We prove the following theorems: There exists an ${\omega }$-covering with the property $s_0$. Under $\mathop {\mathrm {c}ov}\nolimits ({\mathcal {N}}) = $ there exists $X$ such that $ \forall _{B \in {\mathcal {B}}or} [B\cap X$ is not an ${\omega }$-covering or $X\setminus B$ is not an ${\omega }$-covering]. Also we characterize the property of being an ${\omega }$-covering.
LA - eng
KW - ${\omega }$-covering set; ${\mathcal {E}}$; hereditarily nonparadoxical set; -covering set; ; hereditarily nonparadoxical set
UR - http://eudml.org/doc/30606
ER -

References

top
  1. 10.2307/44152538, Real Anal. Exchange 20(2) (1994/5), 536–558. (1994/5) MR1348078DOI10.2307/44152538
  2. 10.1090/S0002-9939-1993-1139474-6, Proc. Amer. Math. Soc. 118 (1993), 577–586. (1993) Zbl0787.03037MR1139474DOI10.1090/S0002-9939-1993-1139474-6
  3. General Topology, Revised and Completed Edition. Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. (1989) MR1039321
  4. 10.4064/cm-56-2-231-233, Colloq. Math. 56 (1988), 231–233. (1988) MR0991209DOI10.4064/cm-56-2-231-233
  5. 10.4064/cm-66-1-57-62, Colloq. Math. 66 (1993), 57–62. (1993) MR1242645DOI10.4064/cm-66-1-57-62
  6. Certain measure zero, first category sets, Real Anal. Exchange 17 (1991–92), 771–774. (1991–92) MR1171418
  7. 10.4064/fm-139-3-177-191, Fund. Math. 139 (1991), 177–191. (1991) Zbl0763.04005MR1149411DOI10.4064/fm-139-3-177-191

NotesEmbed ?

top

You must be logged in to post comments.