Loading [MathJax]/extensions/MathZoom.js
We investigate subadditive measures on orthomodular lattices. We show as the main result that an orthomodular lattice has to be distributive (=Boolean) if it possesses a unital set of subadditive probability measures. This result may find an application in the foundation of quantum theories, mathematical logic, or elsewhere.
We prove:
1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension.
2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension.
Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ hull to every negligible/measurable subset of [0,1]?
Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....
Gruenhage asked if it was possible to cover the real line by less than continuum many translates of a compact nullset. Under the Continuum Hypothesis the answer is obviously negative. Elekes and Stepr mans gave an affirmative answer by showing that if is the well known compact nullset considered first by Erdős and Kakutani then ℝ can be covered by cof() many translates of . As this set has no analogue in more general groups, it was asked by Elekes and Stepr mans whether such a result holds for...
We answer a question of Darji and Keleti by proving that there exists a compact set C₀ ⊂ ℝ of measure zero such that for every perfect set P ⊂ ℝ there exists x ∈ ℝ such that (C₀+x) ∩ P is uncountable. Using this C₀ we answer a question of Gruenhage by showing that it is consistent with ZFC (as it follows e.g. from ) that less than many translates of a compact set of measure zero can cover ℝ.
We show that each sequentially continuous (with respect to the pointwise convergence) normed measure on a bold algebra of fuzzy sets (Archimedean -algebra) can be uniquely extended to a sequentially continuous measure on the generated Łukasiewicz tribe and, in a natural way, the extension is maximal. We prove that for normed measures on Łukasiewicz tribes monotone (sequential) continuity implies sequential continuity, hence the assumption of sequential continuity is not restrictive. This yields...
We show that the existence of measurable envelopes of all subsets of ℝⁿ with respect to the d-dimensional Hausdorff measure (0 < d < n) is independent of ZFC. We also investigate the consistency of the existence of -measurable Sierpiński sets.
We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.
We investigate some geometrical properties of squares of special Sierpiński sets. In particular, we prove that (under CH) there exists a Sierpiński set S and a function p: S → S such that the images of the graph of this function under π'(⟨x,y⟩) = x - y and π''(⟨x,y⟩) = x + y are both Lusin sets.
We give necessary and sufficient conditions for a totally ordered by extension family (Ω, Σx, μx)x ∈ X of spaces of probability to have a measure μ which is an extension of all the measures μx. As an application we study when a probability measure on Ω has an extension defined on all the subsets of Ω.
We show that under the axiom there is no uniformly completely Ramsey null set of size . In particular, this holds in the iterated perfect set model. This answers a question of U. Darji.
We prove the following theorems: There exists an -covering with the property . Under there exists such that is not an -covering or is not an -covering]. Also we characterize the property of being an -covering.
We prove that the ideal (a) defined by the density topology is not generated. This answers a question of Z. Grande and E. Strońska.
In this note, we prove that the countable compactness of together with the Countable Axiom of Choice yields the existence of a nonmeasurable subset of . This is done by providing a family of nonmeasurable subsets of whose intersection with every non-negligible Lebesgue measurable set is still not Lebesgue measurable. We develop this note in three sections: the first presents the main result, the second recalls known results concerning non-Lebesgue measurability and its relations with the Axiom...
Currently displaying 1 –
17 of
17