Multi-faithful spanning trees of infinite graphs

Norbert Polat

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 3, page 477-492
  • ISSN: 0011-4642

Abstract

top
For an end τ and a tree T of a graph G we denote respectively by m ( τ ) and m T ( τ ) the maximum numbers of pairwise disjoint rays of G and T belonging to τ , and we define t m ( τ ) : = min { m T ( τ ) T is a spanning tree of G } . In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function f mapping every end τ of G to a cardinal f ( τ ) such that t m ( τ ) f ( τ ) m ( τ ) , there exists a spanning tree T of G such that m T ( τ ) = f ( τ ) for every end τ of G .

How to cite

top

Polat, Norbert. "Multi-faithful spanning trees of infinite graphs." Czechoslovak Mathematical Journal 51.3 (2001): 477-492. <http://eudml.org/doc/30650>.

@article{Polat2001,
abstract = {For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_\{T\}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to $\tau $, and we define $\mathop \{\mathrm \{t\}m\}(\tau ) := \min \lbrace m_\{T\}(\tau )\: T \text\{is\} \text\{a\} \text\{spanning\} \text\{tree\} \text\{of\} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop \{\mathrm \{t\}m\}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_\{T\}(\tau ) = f(\tau )$ for every end $\tau $ of $G$.},
author = {Polat, Norbert},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite graph; end; end-faithful; spanning tree; multiplicity; infinite graph; end; end-faithful; spanning tree; multiplicity},
language = {eng},
number = {3},
pages = {477-492},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multi-faithful spanning trees of infinite graphs},
url = {http://eudml.org/doc/30650},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Polat, Norbert
TI - Multi-faithful spanning trees of infinite graphs
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 477
EP - 492
AB - For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_{T}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to $\tau $, and we define $\mathop {\mathrm {t}m}(\tau ) := \min \lbrace m_{T}(\tau )\: T \text{is} \text{a} \text{spanning} \text{tree} \text{of} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop {\mathrm {t}m}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_{T}(\tau ) = f(\tau )$ for every end $\tau $ of $G$.
LA - eng
KW - infinite graph; end; end-faithful; spanning tree; multiplicity; infinite graph; end; end-faithful; spanning tree; multiplicity
UR - http://eudml.org/doc/30650
ER -

References

top
  1. Topologie Générale. Chapitre 9, Hermann, Paris, 1958. (1958) MR0173226
  2. 10.1007/BF02566233, Comment. Math. Helv. 17 (1944), 1–38. (1944) MR0012214DOI10.1007/BF02566233
  3. Three remarks on end-faithfulness, Finite and Infinite Combinatorics in Sets and Logic, N.  Sauer et al. (eds.), Kluwer, Dordrecht, 1993, pp. 125–133. (1993) MR1261200
  4. 10.1007/BF01362670, Math. Ann. 157 (1964), 125–137. (1964) Zbl0125.11701MR0170340DOI10.1007/BF01362670
  5. 10.1002/mana.19650300106, Math. Nachr. 30 (1965), 63–85. (1965) Zbl0131.20904MR0190031DOI10.1002/mana.19650300106
  6. 10.1002/mana.19700440109, Math. Nachr. 44 (1970), 119–127. (1970) MR0270953DOI10.1002/mana.19700440109
  7. Enden offener Raüme und unendliche diskontinuierliche Gruppen, Comment. Math. Helv. 15 (1943), 27–32. (1943) MR0007646
  8. Connectivity in Infinite Graphs, Studies in Pure Mathematics, L. Mirsky (ed.), Academic Press, New York-London, 1971, pp. 137–143. (1971) Zbl0217.02603MR0278982
  9. Spanning trees of countable graphs omitting sets of dominated ends, Discrete Math. 194 (1999), 151–172. (1999) MR1657074
  10. 10.1002/mana.19821070124, Math. Nachr. 107 (1982), 283–314. (1982) Zbl0536.05043MR0695755DOI10.1002/mana.19821070124
  11. 10.1002/mana.19841150126, Math. Nachr. 115 (1984), 337–352. (1984) Zbl0536.05045MR0755288DOI10.1002/mana.19841150126
  12. Spanning trees of infinite graphs, Czechoslovak Math. J. 41 (1991), 52–60. (1991) Zbl0793.05054MR1087622
  13. 10.1006/jctb.1996.0035, J.  Combin. Theory Ser. B 67 (1996), 86–110. (1996) Zbl0855.05051MR1385385DOI10.1006/jctb.1996.0035
  14. 10.1006/jctb.1996.0057, J.  Combin. Theory Ser. B 68 (1996), 56–86. (1996) Zbl0855.05052MR1405706DOI10.1006/jctb.1996.0057
  15. 10.1016/0012-365X(91)90344-2, Discrete Math. 95 (1991). (1991) MR1045600DOI10.1016/0012-365X(91)90344-2
  16. 10.1016/0012-365X(91)90345-3, Discrete Math. 95 (1991), 331–340. (1991) MR1141946DOI10.1016/0012-365X(91)90345-3
  17. 10.1016/0095-8956(92)90059-7, J.  Combin. Theory Ser. B 54 (1992), 322–324. (1992) Zbl0753.05030MR1152455DOI10.1016/0095-8956(92)90059-7
  18. Spanning trees of locally finite graphs, Czechoslovak Math. J. 39 (1989), 193–197. (1989) Zbl0679.05023MR0992126

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.