Multi-faithful spanning trees of infinite graphs
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 3, page 477-492
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPolat, Norbert. "Multi-faithful spanning trees of infinite graphs." Czechoslovak Mathematical Journal 51.3 (2001): 477-492. <http://eudml.org/doc/30650>.
@article{Polat2001,
abstract = {For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_\{T\}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to $\tau $, and we define $\mathop \{\mathrm \{t\}m\}(\tau ) := \min \lbrace m_\{T\}(\tau )\: T \text\{is\} \text\{a\} \text\{spanning\} \text\{tree\} \text\{of\} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop \{\mathrm \{t\}m\}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_\{T\}(\tau ) = f(\tau )$ for every end $\tau $ of $G$.},
author = {Polat, Norbert},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite graph; end; end-faithful; spanning tree; multiplicity; infinite graph; end; end-faithful; spanning tree; multiplicity},
language = {eng},
number = {3},
pages = {477-492},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multi-faithful spanning trees of infinite graphs},
url = {http://eudml.org/doc/30650},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Polat, Norbert
TI - Multi-faithful spanning trees of infinite graphs
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 477
EP - 492
AB - For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_{T}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to $\tau $, and we define $\mathop {\mathrm {t}m}(\tau ) := \min \lbrace m_{T}(\tau )\: T \text{is} \text{a} \text{spanning} \text{tree} \text{of} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop {\mathrm {t}m}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_{T}(\tau ) = f(\tau )$ for every end $\tau $ of $G$.
LA - eng
KW - infinite graph; end; end-faithful; spanning tree; multiplicity; infinite graph; end; end-faithful; spanning tree; multiplicity
UR - http://eudml.org/doc/30650
ER -
References
top- Topologie Générale. Chapitre 9, Hermann, Paris, 1958. (1958) MR0173226
- 10.1007/BF02566233, Comment. Math. Helv. 17 (1944), 1–38. (1944) MR0012214DOI10.1007/BF02566233
- Three remarks on end-faithfulness, Finite and Infinite Combinatorics in Sets and Logic, N. Sauer et al. (eds.), Kluwer, Dordrecht, 1993, pp. 125–133. (1993) MR1261200
- 10.1007/BF01362670, Math. Ann. 157 (1964), 125–137. (1964) Zbl0125.11701MR0170340DOI10.1007/BF01362670
- 10.1002/mana.19650300106, Math. Nachr. 30 (1965), 63–85. (1965) Zbl0131.20904MR0190031DOI10.1002/mana.19650300106
- 10.1002/mana.19700440109, Math. Nachr. 44 (1970), 119–127. (1970) MR0270953DOI10.1002/mana.19700440109
- Enden offener Raüme und unendliche diskontinuierliche Gruppen, Comment. Math. Helv. 15 (1943), 27–32. (1943) MR0007646
- Connectivity in Infinite Graphs, Studies in Pure Mathematics, L. Mirsky (ed.), Academic Press, New York-London, 1971, pp. 137–143. (1971) Zbl0217.02603MR0278982
- Spanning trees of countable graphs omitting sets of dominated ends, Discrete Math. 194 (1999), 151–172. (1999) MR1657074
- 10.1002/mana.19821070124, Math. Nachr. 107 (1982), 283–314. (1982) Zbl0536.05043MR0695755DOI10.1002/mana.19821070124
- 10.1002/mana.19841150126, Math. Nachr. 115 (1984), 337–352. (1984) Zbl0536.05045MR0755288DOI10.1002/mana.19841150126
- Spanning trees of infinite graphs, Czechoslovak Math. J. 41 (1991), 52–60. (1991) Zbl0793.05054MR1087622
- 10.1006/jctb.1996.0035, J. Combin. Theory Ser. B 67 (1996), 86–110. (1996) Zbl0855.05051MR1385385DOI10.1006/jctb.1996.0035
- 10.1006/jctb.1996.0057, J. Combin. Theory Ser. B 68 (1996), 56–86. (1996) Zbl0855.05052MR1405706DOI10.1006/jctb.1996.0057
- 10.1016/0012-365X(91)90344-2, Discrete Math. 95 (1991). (1991) MR1045600DOI10.1016/0012-365X(91)90344-2
- 10.1016/0012-365X(91)90345-3, Discrete Math. 95 (1991), 331–340. (1991) MR1141946DOI10.1016/0012-365X(91)90345-3
- 10.1016/0095-8956(92)90059-7, J. Combin. Theory Ser. B 54 (1992), 322–324. (1992) Zbl0753.05030MR1152455DOI10.1016/0095-8956(92)90059-7
- Spanning trees of locally finite graphs, Czechoslovak Math. J. 39 (1989), 193–197. (1989) Zbl0679.05023MR0992126
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.