Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 1, page 87-95
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBarbu, Dorel, and Bocşan, Gheorghe. "Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients." Czechoslovak Mathematical Journal 52.1 (2002): 87-95. <http://eudml.org/doc/30687>.
@article{Barbu2002,
abstract = {In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones.},
author = {Barbu, Dorel, Bocşan, Gheorghe},
journal = {Czechoslovak Mathematical Journal},
keywords = {mild solution; Picard approximations; mild solution; Picard approximations},
language = {eng},
number = {1},
pages = {87-95},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients},
url = {http://eudml.org/doc/30687},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Barbu, Dorel
AU - Bocşan, Gheorghe
TI - Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 1
SP - 87
EP - 95
AB - In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones.
LA - eng
KW - mild solution; Picard approximations; mild solution; Picard approximations
UR - http://eudml.org/doc/30687
ER -
References
top- Measures of Noncompactness and Condensing Operators, Birkhauser-Verlag, Basel-Boston-Berlin, 1992. (1992) MR1153247
- 10.1006/jfan.1994.1040, J. Funct. Anal. 120 (1994), 484–510. (1994) MR1266318DOI10.1006/jfan.1994.1040
- Local and global existence for mild solutions of stochastic differential equations, Portugal. Math. 55 (1998), 411–424. (1998) Zbl0931.60053MR1672110
- 10.1080/07362999208809260, Stochastic Anal. Appl. 10 (1992), 143–153. (1992) MR1154532DOI10.1080/07362999208809260
- Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992. (1992) MR1207136
- Ergodicity for Infinite Dimensional Systems, Cambridge Univ. Press, Cambridge, 1996. (1996) MR1417491
- On quasi-linear parabolic SPDEs with non-Lipschitz coefficients, Random Oper. and Stochastic Equations 6 (1998), 105–126. (1998) MR1609543
- 10.1016/0022-247X(82)90041-5, J. Math. Anal. Appl. 90 (1982), 12–44. (1982) MR0680861DOI10.1016/0022-247X(82)90041-5
- Convergence of successive approximation for parabolic partial differential equations with additive white noise, Serdica 16 (1990), 194–200. (1990) Zbl0723.65149MR1089857
- 10.1080/17442509908834186, Stochastics Stochastics Rep. 66 (1999), 37–85. (1999) MR1687799DOI10.1080/17442509908834186
- Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983. (1983) Zbl0516.47023MR0710486
- Da Prato-Zabczyk’s maximal inequality revisited I, Math. Bohem. 118 (1993), 67–106. (1993) Zbl0785.35115MR1213834
- 10.1016/0022-247X(90)90279-O, J. Math. Anal. Appl. 153 (1990), 288–300. (1990) Zbl0727.34040MR1080132DOI10.1016/0022-247X(90)90279-O
- 10.1016/0022-0396(92)90148-G, J. Differential Equations 96 (1992), 152–169. (1992) Zbl0744.34052MR1153313DOI10.1016/0022-0396(92)90148-G
- 10.1080/07362998408809032, Stochastic Anal. Appl. 2 (1984), 187–192. (1984) Zbl0539.60056MR0746435DOI10.1080/07362998408809032
- 10.1215/kjm/1250521975, J. Math. Sci. Univ. Kyoto 21 (1981), 501–515. (1981) Zbl0484.60053MR0629781DOI10.1215/kjm/1250521975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.