Da Prato-Zabczyk's maximal inequality revisited. I.
Mathematica Bohemica (1993)
- Volume: 118, Issue: 1, page 67-106
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSeidler, Jan. "Da Prato-Zabczyk's maximal inequality revisited. I.." Mathematica Bohemica 118.1 (1993): 67-106. <http://eudml.org/doc/29167>.
@article{Seidler1993,
abstract = {Existence, uniqueness and regularity of mild solutions to semilinear nonautonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is investigated. The adopted approach is based on the factorization method due to Da Prato, Kwapień and Zabczyk.},
author = {Seidler, Jan},
journal = {Mathematica Bohemica},
keywords = {existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method; stochastic evolution equations; regularity properties; existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method},
language = {eng},
number = {1},
pages = {67-106},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Da Prato-Zabczyk's maximal inequality revisited. I.},
url = {http://eudml.org/doc/29167},
volume = {118},
year = {1993},
}
TY - JOUR
AU - Seidler, Jan
TI - Da Prato-Zabczyk's maximal inequality revisited. I.
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 1
SP - 67
EP - 106
AB - Existence, uniqueness and regularity of mild solutions to semilinear nonautonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is investigated. The adopted approach is based on the factorization method due to Da Prato, Kwapień and Zabczyk.
LA - eng
KW - existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method; stochastic evolution equations; regularity properties; existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method
UR - http://eudml.org/doc/29167
ER -
References
top- H. Amann, 10.2969/jmsj/03910093, J. Math. Soc. Japan 59 (1987), 93-116. (1987) Zbl0616.47032MR0867989DOI10.2969/jmsj/03910093
- H. Amann, 10.1016/0022-1236(88)90120-6, J. Funct. Anal. 18 (1988), 233-270. (1988) Zbl0654.47019MR0943499DOI10.1016/0022-1236(88)90120-6
- R. F. Curtain A. J. Pritchard, Infinite dimensional linear system theory, Lecture Notes in Control Inform. Sci. 8, Springer-Verlag, Berlin a.o., 1978. (1978) MR0516812
- G. Da Prato M. Ianelli L. Tubaro, Semi-linear stochastic differential equations in Hilbert spaces, Boll. Un. Mat. Ital. A(5) 16 (1979), 168-177. (1979) MR0530145
- G. Da Prato S. Kwapieri J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), 1-23. (1987) MR0920798
- G. Da Prato J. Zabczyk, A note on semilinear stochastic equations, Differential Integral Equations 1 (1988), 143-155. (1988) MR0922558
- G. Da Prato J. Zabczyk, 10.1080/07362999208809260, Stoch. Anal. Appl. 10 (1992), 143-153. (1992) MR1154532DOI10.1080/07362999208809260
- G. Da Prato J. Zabczyk, 10.1016/0022-0396(92)90111-Y, J. Differential Equations 98 (1992), 181-195. (1992) MR1168978DOI10.1016/0022-0396(92)90111-Y
- A. Friedman, Stochastic differential equations and applications I, Academic Press, New York a.o., 1975. (1975) MR0494490
- T. Funaki, Regularity properties for stochastic partial differential equations of parabolic type, Osaka J. Math. 28 (1991), 495-516. (1991) Zbl0770.60062MR1144470
- B. Goldys, Contributions to the theory of stochastic evolution equations, IMPAN Preprint 394, May 1987. (1987)
- B. Goldys, 10.4064/cm-58-2-327-338, Coiloq. Math. 58 (1990), 327-338. (1990) Zbl0704.60059MR1060184DOI10.4064/cm-58-2-327-338
- E. Heinz, 10.1007/BF02054965, Math. Ann. 123 (1951), 415-438. (1951) Zbl0043.32603MR0044747DOI10.1007/BF02054965
- D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin a.o., 1981. (1981) Zbl0456.35001MR0610244
- A. Ichikawa, 10.1080/17442508408833293, Stochastics 15 (1984), 1-39. (1984) Zbl0538.60068MR0738933DOI10.1080/17442508408833293
- A. Ichikawa, 10.1080/07362998608809094, Stoch. Anal. Appl. 4 (1986), 329-339. (1986) Zbl0622.60066MR0857085DOI10.1080/07362998608809094
- O. Kallenberg R. Sztencel, 10.1007/BF01212560, Probab. Theory Related Fields 88 (1991), 215-247. (1991) MR1096481DOI10.1007/BF01212560
- P. Kotelenez, 10.1080/17442508208833233, Stochastics 8 (1982), 139-151. (1982) Zbl0495.60066MR0686575DOI10.1080/17442508208833233
- P. Kotelenez, 10.1080/07362998408809036, Stoch. Anal. Appl. 2 (1984), 245-265. (1984) Zbl0552.60058MR0757338DOI10.1080/07362998408809036
- P. Kotelenez, 10.1080/17442508708833463, Stochastics 21 (1987), 345-358. (1987) Zbl0622.60065MR0905052DOI10.1080/17442508708833463
- A. Kufner O. John S. Fučík, Function spaces, Academia, Praha, 1977. (1977) MR0482102
- G. Leha G. Ritter, 10.1214/aop/1176993143, Ann. Probab. 12 (1984), 1077-1112. (1984) MR0757771DOI10.1214/aop/1176993143
- R. Manthey, On the solutions of reaction-diffusion equations with white noise, Forschungsergebnisse FSU Jena Nr. N/85/24, 1985. (1985) Zbl0591.35029
- R. Manthey, 10.1002/mana.19861250108, Math. Nachr. 125 (1986), 121-133. (1986) Zbl0594.60063MR0847354DOI10.1002/mana.19861250108
- R. Manthey, 10.1002/mana.19881360114, Math. Nachr. 186 (1988), 209-228. (1988) Zbl0658.60089MR0952473DOI10.1002/mana.19881360114
- M. Metivier, Semimartingales: a course on stochastic processes, Walter de Gruyter, Berlin-New York, 1982. (1982) Zbl0503.60054MR0688144
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York a.o., 1983. (1983) Zbl0516.47023MR0710486
- K.-U. Schaumlöffel F. Flandoli, 10.1080/17442509108833684, Stochastics Rep. 34 (1991), 241-255. (1991) MR1124837DOI10.1080/17442509108833684
- R. Seeley, 10.2307/2373377, Amer. J. Math. 93 (1971), 299-309. (1971) MR0287376DOI10.2307/2373377
- R. Seeley, 10.4064/sm-44-1-47-60, Studia Math. 44 (1972), 47-60. (1972) Zbl0237.46041MR0315432DOI10.4064/sm-44-1-47-60
- П. E. Соболевский, Об уравнениях параболического типа в банаховом пространстве, Труды Mocкoв. Maт. Общ. 10 (1961), 297-350. (1961) Zbl1160.68305MR0141900
- H. Tanabe, Equations of evolution, Pitman, London a.o., 1979. (1979) Zbl0417.35003MR0533824
- H. Triebel, Interpolation theory, function spaces, differential operators, Deutscher Verlag der Wissenschaften, Berlin, 1978. (1978) Zbl0387.46033MR0500580
- L. Tubaro, 10.1080/07362998408809032, Stoch. Anal. Appl. 2 (1984), 187-192. (1984) MR0746435DOI10.1080/07362998408809032
- L. Tubaro, Regularity results of the process , Rend. Sem. Mat. Univ. Politec. Torino, Special Issue 1982, pp. 241-248. (1982) MR0685397
Citations in EuDML Documents
top- Erika Hausenblas, Jan Seidler, A note on maximal inequality for stochastic convolutions
- Szymon Peszat, Jan Seidler, Maximal inequalities and space-time regularity of stochastic convolutions
- Bohdan Maslowski, Stability of semilinear equations with boundary and pointwise noise
- Dorel Barbu, Gheorghe Bocşan, Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
- Samy Tindel, SPDEs with pseudodifferential generators: the existence of a density
- B. Maslowski, I. Simão, Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures
- Jan Seidler, Ergodic behaviour of stochastic parabolic equations
- Ivo Vrkoč, Weak averaging of stochastic evolution equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.