Da Prato-Zabczyk's maximal inequality revisited. I.

Jan Seidler

Mathematica Bohemica (1993)

  • Volume: 118, Issue: 1, page 67-106
  • ISSN: 0862-7959

Abstract

top
Existence, uniqueness and regularity of mild solutions to semilinear nonautonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is investigated. The adopted approach is based on the factorization method due to Da Prato, Kwapień and Zabczyk.

How to cite

top

Seidler, Jan. "Da Prato-Zabczyk's maximal inequality revisited. I.." Mathematica Bohemica 118.1 (1993): 67-106. <http://eudml.org/doc/29167>.

@article{Seidler1993,
abstract = {Existence, uniqueness and regularity of mild solutions to semilinear nonautonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is investigated. The adopted approach is based on the factorization method due to Da Prato, Kwapień and Zabczyk.},
author = {Seidler, Jan},
journal = {Mathematica Bohemica},
keywords = {existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method; stochastic evolution equations; regularity properties; existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method},
language = {eng},
number = {1},
pages = {67-106},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Da Prato-Zabczyk's maximal inequality revisited. I.},
url = {http://eudml.org/doc/29167},
volume = {118},
year = {1993},
}

TY - JOUR
AU - Seidler, Jan
TI - Da Prato-Zabczyk's maximal inequality revisited. I.
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 1
SP - 67
EP - 106
AB - Existence, uniqueness and regularity of mild solutions to semilinear nonautonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is investigated. The adopted approach is based on the factorization method due to Da Prato, Kwapień and Zabczyk.
LA - eng
KW - existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method; stochastic evolution equations; regularity properties; existence; uniqueness; regularity; mild solutions; semilinear non- autonomous stochastic parabolic equations; locally Lipschitzian nonlinear terms; factorization method
UR - http://eudml.org/doc/29167
ER -

References

top
  1. H. Amann, 10.2969/jmsj/03910093, J. Math. Soc. Japan 59 (1987), 93-116. (1987) Zbl0616.47032MR0867989DOI10.2969/jmsj/03910093
  2. H. Amann, 10.1016/0022-1236(88)90120-6, J. Funct. Anal. 18 (1988), 233-270. (1988) Zbl0654.47019MR0943499DOI10.1016/0022-1236(88)90120-6
  3. R. F. Curtain A. J. Pritchard, Infinite dimensional linear system theory, Lecture Notes in Control Inform. Sci. 8, Springer-Verlag, Berlin a.o., 1978. (1978) MR0516812
  4. G. Da Prato M. Ianelli L. Tubaro, Semi-linear stochastic differential equations in Hilbert spaces, Boll. Un. Mat. Ital. A(5) 16 (1979), 168-177. (1979) MR0530145
  5. G. Da Prato S. Kwapieri J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), 1-23. (1987) MR0920798
  6. G. Da Prato J. Zabczyk, A note on semilinear stochastic equations, Differential Integral Equations 1 (1988), 143-155. (1988) MR0922558
  7. G. Da Prato J. Zabczyk, 10.1080/07362999208809260, Stoch. Anal. Appl. 10 (1992), 143-153. (1992) MR1154532DOI10.1080/07362999208809260
  8. G. Da Prato J. Zabczyk, 10.1016/0022-0396(92)90111-Y, J. Differential Equations 98 (1992), 181-195. (1992) MR1168978DOI10.1016/0022-0396(92)90111-Y
  9. A. Friedman, Stochastic differential equations and applications I, Academic Press, New York a.o., 1975. (1975) MR0494490
  10. T. Funaki, Regularity properties for stochastic partial differential equations of parabolic type, Osaka J. Math. 28 (1991), 495-516. (1991) Zbl0770.60062MR1144470
  11. B. Goldys, Contributions to the theory of stochastic evolution equations, IMPAN Preprint 394, May 1987. (1987) 
  12. B. Goldys, 10.4064/cm-58-2-327-338, Coiloq. Math. 58 (1990), 327-338. (1990) Zbl0704.60059MR1060184DOI10.4064/cm-58-2-327-338
  13. E. Heinz, 10.1007/BF02054965, Math. Ann. 123 (1951), 415-438. (1951) Zbl0043.32603MR0044747DOI10.1007/BF02054965
  14. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin a.o., 1981. (1981) Zbl0456.35001MR0610244
  15. A. Ichikawa, 10.1080/17442508408833293, Stochastics 15 (1984), 1-39. (1984) Zbl0538.60068MR0738933DOI10.1080/17442508408833293
  16. A. Ichikawa, 10.1080/07362998608809094, Stoch. Anal. Appl. 4 (1986), 329-339. (1986) Zbl0622.60066MR0857085DOI10.1080/07362998608809094
  17. O. Kallenberg R. Sztencel, 10.1007/BF01212560, Probab. Theory Related Fields 88 (1991), 215-247. (1991) MR1096481DOI10.1007/BF01212560
  18. P. Kotelenez, 10.1080/17442508208833233, Stochastics 8 (1982), 139-151. (1982) Zbl0495.60066MR0686575DOI10.1080/17442508208833233
  19. P. Kotelenez, 10.1080/07362998408809036, Stoch. Anal. Appl. 2 (1984), 245-265. (1984) Zbl0552.60058MR0757338DOI10.1080/07362998408809036
  20. P. Kotelenez, 10.1080/17442508708833463, Stochastics 21 (1987), 345-358. (1987) Zbl0622.60065MR0905052DOI10.1080/17442508708833463
  21. A. Kufner O. John S. Fučík, Function spaces, Academia, Praha, 1977. (1977) MR0482102
  22. G. Leha G. Ritter, 10.1214/aop/1176993143, Ann. Probab. 12 (1984), 1077-1112. (1984) MR0757771DOI10.1214/aop/1176993143
  23. R. Manthey, On the solutions of reaction-diffusion equations with white noise, Forschungsergebnisse FSU Jena Nr. N/85/24, 1985. (1985) Zbl0591.35029
  24. R. Manthey, 10.1002/mana.19861250108, Math. Nachr. 125 (1986), 121-133. (1986) Zbl0594.60063MR0847354DOI10.1002/mana.19861250108
  25. R. Manthey, 10.1002/mana.19881360114, Math. Nachr. 186 (1988), 209-228. (1988) Zbl0658.60089MR0952473DOI10.1002/mana.19881360114
  26. M. Metivier, Semimartingales: a course on stochastic processes, Walter de Gruyter, Berlin-New York, 1982. (1982) Zbl0503.60054MR0688144
  27. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York a.o., 1983. (1983) Zbl0516.47023MR0710486
  28. K.-U. Schaumlöffel F. Flandoli, 10.1080/17442509108833684, Stochastics Rep. 34 (1991), 241-255. (1991) MR1124837DOI10.1080/17442509108833684
  29. R. Seeley, 10.2307/2373377, Amer. J. Math. 93 (1971), 299-309. (1971) MR0287376DOI10.2307/2373377
  30. R. Seeley, 10.4064/sm-44-1-47-60, Studia Math. 44 (1972), 47-60. (1972) Zbl0237.46041MR0315432DOI10.4064/sm-44-1-47-60
  31. П. E. Соболевский, Об уравнениях параболического типа в банаховом пространстве, Труды Mocкoв. Maт. Общ. 10 (1961), 297-350. (1961) Zbl1160.68305MR0141900
  32. H. Tanabe, Equations of evolution, Pitman, London a.o., 1979. (1979) Zbl0417.35003MR0533824
  33. H. Triebel, Interpolation theory, function spaces, differential operators, Deutscher Verlag der Wissenschaften, Berlin, 1978. (1978) Zbl0387.46033MR0500580
  34. L. Tubaro, 10.1080/07362998408809032, Stoch. Anal. Appl. 2 (1984), 187-192. (1984) MR0746435DOI10.1080/07362998408809032
  35. L. Tubaro, Regularity results of the process X ( t ) = 0 t U ( t , s ) g ( s ) d W s , Rend. Sem. Mat. Univ. Politec. Torino, Special Issue 1982, pp. 241-248. (1982) MR0685397

Citations in EuDML Documents

top
  1. Erika Hausenblas, Jan Seidler, A note on maximal inequality for stochastic convolutions
  2. Szymon Peszat, Jan Seidler, Maximal inequalities and space-time regularity of stochastic convolutions
  3. Bohdan Maslowski, Stability of semilinear equations with boundary and pointwise noise
  4. Dorel Barbu, Gheorghe Bocşan, Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
  5. Samy Tindel, SPDEs with pseudodifferential generators: the existence of a density
  6. B. Maslowski, I. Simão, Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures
  7. Jan Seidler, Ergodic behaviour of stochastic parabolic equations
  8. Ivo Vrkoč, Weak averaging of stochastic evolution equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.