Cesàro wedge and weak Cesàro wedge F K -spaces

H. G. Ince

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 1, page 141-154
  • ISSN: 0011-4642

Abstract

top
In this paper we deal with Cesàro wedge and weak Cesàro wedge F K -spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.

How to cite

top

Ince, H. G.. "Cesàro wedge and weak Cesàro wedge $FK$-spaces." Czechoslovak Mathematical Journal 52.1 (2002): 141-154. <http://eudml.org/doc/30691>.

@article{Ince2002,
abstract = {In this paper we deal with Cesàro wedge and weak Cesàro wedge $FK$-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.},
author = {Ince, H. G.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$FK$-space; wedge $FK$-space; weak wedge $FK$-space; compact operator; matrix mapping; -space; wedge -space; weak wedge -space; compact operator; matrix mapping},
language = {eng},
number = {1},
pages = {141-154},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cesàro wedge and weak Cesàro wedge $FK$-spaces},
url = {http://eudml.org/doc/30691},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Ince, H. G.
TI - Cesàro wedge and weak Cesàro wedge $FK$-spaces
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 1
SP - 141
EP - 154
AB - In this paper we deal with Cesàro wedge and weak Cesàro wedge $FK$-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.
LA - eng
KW - $FK$-space; wedge $FK$-space; weak wedge $FK$-space; compact operator; matrix mapping; -space; wedge -space; weak wedge -space; compact operator; matrix mapping
UR - http://eudml.org/doc/30691
ER -

References

top
  1. The Glinding Humps technique for F K -spaces, Trans. Amer. Math. Soc. 166 (1972), 285–292. (1972) MR0296564
  2. A new class of sequence spaces with applications in summability theory, J.  Reine Angew. Math. 266 (1974), 49–75. (1974) Zbl0277.46012MR0344846
  3. Linear Operators, Interscience Publishers, New York, 1958. (1958) MR0117523
  4. 10.1007/BF01110177, Math. Z. 118 (1970), 93–102. (1970) MR0438019DOI10.1007/BF01110177
  5. 10.1016/0022-247X(72)90218-1, J. Math. Anal. Appl. 39 (1972), 477–494. (1972) Zbl0242.42006MR0447948DOI10.1016/0022-247X(72)90218-1
  6. Sequence Spaces and Series, Marcel Dekker, New York, Basel, 1981. (1981) MR0606740
  7. 10.1007/BF02036747, Arch. Math. 2 (1949), 10–16. (1949) MR0032790DOI10.1007/BF02036747
  8. Topological Vector Spaces I, Springer-Verlag, New York, 1969. (1969) MR0248498
  9. Topological Vector Spaces, University Press, Cambridge, 1964. (1964) MR0162118
  10. 10.1512/iumj.1986.35.35035, Indiana Univ. Math. J. 35 (1986), 669–679. (1986) Zbl0632.46007MR0855180DOI10.1512/iumj.1986.35.35035
  11. 10.1216/RMJ-1972-2-4-595, Rocky Mountain J.  Math. 2 (1972), 595–603. (1972) MR0310496DOI10.1216/RMJ-1972-2-4-595
  12. Functional Analysis, Blaisdell Press, New York-Toronto-London, 1964. (1964) Zbl0136.10603MR0170186
  13. Summability Through Functional Analysis, North Holland, Amsterdam-New York-Oxford, 1984. (1984) Zbl0531.40008MR0738632
  14. 10.1007/BF01175646, Math. Z. 53 (1951), 463–487. (1951) Zbl0045.33403MR0039824DOI10.1007/BF01175646
  15. Theorie der Limitierungsverfahren, Springer-Verlag, Berlin-Göttingen-Heidel-berg, 1958. (1958) Zbl0085.04603MR0118990

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.