C λ -wedge and weak C λ -wedge FK-spaces

İlhan Dağadur

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 3, page 303-314
  • ISSN: 0232-0525

How to cite

top

Dağadur, İlhan. "$C_\lambda $-wedge and weak $C_\lambda $-wedge FK-spaces." Mathematica Slovaca 54.3 (2004): 303-314. <http://eudml.org/doc/34601>.

@article{Dağadur2004,
author = {Dağadur, İlhan},
journal = {Mathematica Slovaca},
keywords = {summability method; matrix mapping; compactness; inclusion mapping},
language = {eng},
number = {3},
pages = {303-314},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {$C_\lambda $-wedge and weak $C_\lambda $-wedge FK-spaces},
url = {http://eudml.org/doc/34601},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Dağadur, İlhan
TI - $C_\lambda $-wedge and weak $C_\lambda $-wedge FK-spaces
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 3
SP - 303
EP - 314
LA - eng
KW - summability method; matrix mapping; compactness; inclusion mapping
UR - http://eudml.org/doc/34601
ER -

References

top
  1. ARMITAGE D. H.-MADDOX I. J., A new type of Cesdro mean, Analysis 9 (1989), 195-204. (1989) MR0998176
  2. BENNETT G., The glinding humps for F K -spaces, Trans. Amer. Math. Soc 166 (1972), 285-292. (1972) MR0296564
  3. BENNETT G., A new class of sequence spaces with applications in summability theory, J. Reine Angew. Math. 266 (1974), 49-75. (1974) Zbl0277.46012MR0344846
  4. BUNTINAS M., Convergent and bounded Cesáro sections in F K -spaces, Math. Z. 121 (1971), 191-200. (1971) Zbl0211.14603MR0295020
  5. DUNFORD N.-SCHWARTZ J. T., Linear Operators I. General Theory, Pure Appl. Math. 6, Interscience Publishers, New York-London, 1958. (1958) Zbl0084.10402MR0117523
  6. GOES G.-GOES S., Sequences of bounded variation and sequences of Fourier coefficients I, Math. Z. 118 (1970), 93-102. (1970) MR0438019
  7. GOES G., Sequences of bounded variation and sequences of Fourier coefficients II, J. Math. Anal. Appl. 39 (1972), 477-494. (1972) Zbl0242.42006MR0447948
  8. INCE H. G., Cesáro wedge and weak Cesáro wedge F K -spaces, Czechoslovak Math. J. 52 (2002), 141-154. Zbl0996.46004MR1885463
  9. KAMTHAN P. K.-GUPTA M., Sequence Spaces and Series, Lecture Notes in Pure and Appl. Math. 65, Marcell Dekker Inc., New York-Basel, 1981. (1981) Zbl0447.46002MR0606740
  10. MADDOX J. I., Elements of Functional Analysis, Cambridge Univ. Press, Cambridge, 1970. (1970) Zbl0193.08601MR0390692
  11. OSIKIEWICZ J. A., Equivalance results for Cesáro submethods, Analysis 20 (2000), 35-43. MR1757067
  12. SNYDER A. K., An embedding property of sequence spaces related to Meyer Konig and Zeller type theorems, Indiana Univ. Math. J. 35 (1986), 669-679. (1986) MR0855180
  13. WILANSKY A., Functional Analysis, Blaisdell Publishing Company, New York-Toronto-London, 1964. (1964) Zbl0136.10603MR0170186
  14. WILANSKY A., Summability Through Functional Analysis, North-Holland Math. Stud. 85, North-Holland, Amsterdam-New York-Oxford, 1984. (1984) Zbl0531.40008MR0738632
  15. YURIMYAE E., Einige Fragen über verallgemeinerte Matrixverfahren co-regular und co-null Verfahren, Eesti Tead. Akad. Toimetised Tehn. Finis. Math. 8 (1959), 115-121. (1959) MR0109972
  16. ZELLER K., Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53 (1951), 463-487. (1951) Zbl0045.33403MR0039824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.