Extremal metrics and modulus

I. Anić; M. Mateljević; Dragomir Šarić

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 2, page 225-235
  • ISSN: 0011-4642

Abstract

top
We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in 3 space. Also, some generalizations of Gehring’s result are presented.

How to cite

top

Anić, I., Mateljević, M., and Šarić, Dragomir. "Extremal metrics and modulus." Czechoslovak Mathematical Journal 52.2 (2002): 225-235. <http://eudml.org/doc/30695>.

@article{Anić2002,
abstract = {We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in $\mathbb \{R\}^3$ space. Also, some generalizations of Gehring’s result are presented.},
author = {Anić, I., Mateljević, M., Šarić, Dragomir},
journal = {Czechoslovak Mathematical Journal},
keywords = {extremal distance; conformal capacity; Beurling theorem; extremal distance; conformal capacity; Beurling theorem},
language = {eng},
number = {2},
pages = {225-235},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extremal metrics and modulus},
url = {http://eudml.org/doc/30695},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Anić, I.
AU - Mateljević, M.
AU - Šarić, Dragomir
TI - Extremal metrics and modulus
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 225
EP - 235
AB - We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in $\mathbb {R}^3$ space. Also, some generalizations of Gehring’s result are presented.
LA - eng
KW - extremal distance; conformal capacity; Beurling theorem; extremal distance; conformal capacity; Beurling theorem
UR - http://eudml.org/doc/30695
ER -

References

top
  1. Conformal Invariants, McGraw-Hill Book Company, 1973. (1973) Zbl0272.30012MR0357743
  2. 10.1090/S0002-9947-1962-0139735-8, Trans. Amer. Math. Soc. 103 (1962), 383–393. (1962) Zbl0113.05805MR0139735DOI10.1090/S0002-9947-1962-0139735-8
  3. 10.1090/S0002-9904-1963-10902-7, Bull. Amer. Math. Soc. 69 (1963). (1963) Zbl0136.38102MR0145071DOI10.1090/S0002-9904-1963-10902-7
  4. 10.1307/mmj/1029000164, Michigan Math. J. 16 (1969), 43–51. (1969) MR0247077DOI10.1307/mmj/1029000164
  5. Quadratic Differentials, Springer-Verlag, 1984. (1984) Zbl0547.30038MR0743423
  6. Dirichlet’s Principle, Conformal Mappings and Minimal Surfaces, New York, Interscience Publishers, Inc., 1950. (1950) MR0036317
  7. Teichmüller Theory and Quadratic Differentials, New York, A Wiley-Interscience Publication, 1987. (1987) Zbl0629.30002MR0903027
  8. Differential Geometry: Manifolds, Curves and Surfaces, Springer-Verlag, 1987. (1987) MR0903026
  9. On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A 298 (1961), 1–36. (1961) Zbl0096.27506MR0140685
  10. On the conformal capacity in space, J. Math. Mech. 8 (1959), 411–414. (1959) Zbl0086.28203MR0104785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.