On half cyclically ordered groups

Ján Jakubík

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 2, page 275-294
  • ISSN: 0011-4642

Abstract

top
In this paper we introduce and investigate the notion of half cyclically ordered group generalizing the notion of half partially ordered group whose study was begun by Giraudet and Lucas.

How to cite

top

Jakubík, Ján. "On half cyclically ordered groups." Czechoslovak Mathematical Journal 52.2 (2002): 275-294. <http://eudml.org/doc/30698>.

@article{Jakubík2002,
abstract = {In this paper we introduce and investigate the notion of half cyclically ordered group generalizing the notion of half partially ordered group whose study was begun by Giraudet and Lucas.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {half partially ordered group; half cyclically ordered group; half $lc$-group; lexicographic product; half partially ordered group; half cyclically ordered group; half -group; lexicographic product},
language = {eng},
number = {2},
pages = {275-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On half cyclically ordered groups},
url = {http://eudml.org/doc/30698},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Jakubík, Ján
TI - On half cyclically ordered groups
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 275
EP - 294
AB - In this paper we introduce and investigate the notion of half cyclically ordered group generalizing the notion of half partially ordered group whose study was begun by Giraudet and Lucas.
LA - eng
KW - half partially ordered group; half cyclically ordered group; half $lc$-group; lexicographic product; half partially ordered group; half cyclically ordered group; half -group; lexicographic product
UR - http://eudml.org/doc/30698
ER -

References

top
  1. Lexicographic products of cyclically ordered groups, Math. Slovaca 45 (1995), 29–38. (1995) MR1335837
  2. Cantor extension of a half lattice ordered group, Math. Slovaca 48 (1998), 221–231. (1998) MR1647682
  3. On the maximal Dedekind completion of a half partially ordered group, Math. Slovaca 46 (1996), 379–390. (1996) MR1472632
  4. 10.1006/jctb.1995.1022, J.  Combin. Theory Ser. B, 63 (1995), 310–321. (1995) MR1320173DOI10.1006/jctb.1995.1022
  5. Partially Ordered Algebraic Systems, Addison-Wesley, Reading, 1963. (1963) Zbl0137.02001MR0171864
  6. 10.4064/fm-139-2-75-89, Fund. Math. 139 (1991), 75–89. (1991) MR1150592DOI10.4064/fm-139-2-75-89
  7. Varieties of half lattice ordered groups of monotonic permutations in chains, Prepublication No  57, Université Paris  7, CNRS Logique (1996). (1996) 
  8. Lexicographic products of partially ordered groupoids, Czechoslovak Math. J. 14 (1964), 281–305. (Russian) (1964) MR0167558
  9. On extended cyclic orders, Czechoslovak Math.  J. 44 (1994), 661–675. (1994) MR1295142
  10. On half lattice ordered groups, Czechoslovak Math.  J. 46 (1996), 745–767. (1996) MR1414606
  11. 10.1023/A:1022881202595, Czechoslovak Math.  J. 48 (1998), 229–241. (1998) MR1624307DOI10.1023/A:1022881202595
  12. 10.1023/A:1013761906636, Czechoslovak Math. J 51 (2001), 127–137. (2001) MR1814638DOI10.1023/A:1013761906636
  13. On convex linearly ordered subgroups of a h -group, Math. Slovaca 50 (2000), 127–133. (2000) MR1763115
  14. On ordered groups, Izv. Akad. Nauk SSSR, ser. mat. 13 (1949), 473–482. (Russian) (1949) MR0032645
  15. Universal cyclically ordered sets, Czechoslovak Math.  J. 35 (1986), 158–161. (1986) MR0779343
  16. On representations of cyclically ordered sets, Czechoslovak Math.  J. 39 (1989), 127–132. (1989) 
  17. 10.1016/S0195-6698(89)80022-8, European J.  Combin. 10 (1989), 477–488. (1989) MR1014556DOI10.1016/S0195-6698(89)80022-8
  18. On ordered and cyclically ordered groups I, II, III, Věstník král. čes. spol. nauk (1946), 1–31; (1947), 1–33; (1948), 1–26. (Czech) MR0020995
  19. 10.4064/fm-47-2-161-166, Fund. Math. 47 (1959), 161–166. (1959) Zbl0096.01501MR0110759DOI10.4064/fm-47-2-161-166
  20. Torsion classes and torsion prime selectors of h -groups, Math. Slovaca 50 (2000), 31–40. (2000) MR1764343

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.