On monotone permutations of -cyclically ordered sets
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 2, page 403-415
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJakubík, Ján. "On monotone permutations of $\ell $-cyclically ordered sets." Czechoslovak Mathematical Journal 56.2 (2006): 403-415. <http://eudml.org/doc/31037>.
@article{Jakubík2006,
abstract = {For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline\{C\}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline\{C\}\ne \emptyset $, then $(P(M), \cdot ,\overline\{C\})$ is a half cyclically ordered group.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group; completeness; monotone permutation; half cyclically ordered group},
language = {eng},
number = {2},
pages = {403-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On monotone permutations of $\ell $-cyclically ordered sets},
url = {http://eudml.org/doc/31037},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Jakubík, Ján
TI - On monotone permutations of $\ell $-cyclically ordered sets
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 403
EP - 415
AB - For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline{C}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline{C}\ne \emptyset $, then $(P(M), \cdot ,\overline{C})$ is a half cyclically ordered group.
LA - eng
KW - $\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group; completeness; monotone permutation; half cyclically ordered group
UR - http://eudml.org/doc/31037
ER -
References
top- On the maximal Dedekind completion of a half partially ordered group, Math. Slovaca 46 (1996), 379–390. (1996) MR1472632
- Cantor extension of a half lattice ordered group, Math. Slovaca 48 (1998), 221–231. (1998) MR1647682
- Maximal Dedekind completion of a half lattice ordered group, Math. Slovaca 49 (1999), 403–416. (1999) MR1719680
- 10.1006/jctb.1995.1022, J. Combinatorial Theory, Series B 63 (1995), 310–321. (1995) MR1320173DOI10.1006/jctb.1995.1022
- 10.1023/A:1006381208272, Order 16 (1999), 149–164. (1999) MR1752172DOI10.1023/A:1006381208272
- 10.4064/fm-139-2-75-89, Fundamenta Math. 139 (1991), 75–89. (1991) MR1150592DOI10.4064/fm-139-2-75-89
- Varieties of half lattice ordered groups of monotonic permutations in chains, Prepublication No 57, Université Paris 7, CNRS Logique (1996). (1996)
- On half lattice ordered groups, Czechoslovak Math. J. 46 (1996), 745–767. (1996) MR1414606
- 10.1023/A:1013761906636, Czechoslovak Math. J. 51 (2001), 127–138. (2001) MR1814638DOI10.1023/A:1013761906636
- 10.1023/A:1021718426347, Czechoslovak Math. J. 52 (2002), 275–294. (2002) MR1905435DOI10.1023/A:1021718426347
- On convex linearly ordered subgroups of a -group, Math. Slovaca 50 (2000), 127–133. (2000) MR1763115
- Cyclically ordered sets, Czechoslovak Math. J. 32 (1982), 460–473. (1982) MR0669787
- Universal cyclically ordered sets, Czechoslovak Math. J. 35 (1985), 158–161. (1985) MR0779343
- On representations of cyclically ordered sets, Czechoslovak Math. J. 39 (1989), 127–132. (1989) MR0669787
- 10.1016/S0195-6698(89)80022-8, European J. Combin. 10 (1989), 477–488. (1989) Zbl0692.05059MR1014556DOI10.1016/S0195-6698(89)80022-8
- Torsion classes and torsion prime selectors of -groups, Math. Slovaca 50 (2000), 31–40. (2000) MR1764343
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.