On monotone permutations of -cyclically ordered sets

Ján Jakubík

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 2, page 403-415
  • ISSN: 0011-4642

Abstract

top
For an -cyclically ordered set M with the -cyclic order C let P ( M ) be the set of all monotone permutations on M . We define a ternary relation C ¯ on the set P ( M ) . Further, we define in a natural way a group operation (denoted by · ) on P ( M ) . We prove that if the -cyclic order C is complete and C ¯ , then ( P ( M ) , · , C ¯ ) is a half cyclically ordered group.

How to cite

top

Jakubík, Ján. "On monotone permutations of $\ell $-cyclically ordered sets." Czechoslovak Mathematical Journal 56.2 (2006): 403-415. <http://eudml.org/doc/31037>.

@article{Jakubík2006,
abstract = {For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline\{C\}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline\{C\}\ne \emptyset $, then $(P(M), \cdot ,\overline\{C\})$ is a half cyclically ordered group.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group; completeness; monotone permutation; half cyclically ordered group},
language = {eng},
number = {2},
pages = {403-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On monotone permutations of $\ell $-cyclically ordered sets},
url = {http://eudml.org/doc/31037},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Jakubík, Ján
TI - On monotone permutations of $\ell $-cyclically ordered sets
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 403
EP - 415
AB - For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline{C}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline{C}\ne \emptyset $, then $(P(M), \cdot ,\overline{C})$ is a half cyclically ordered group.
LA - eng
KW - $\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group; completeness; monotone permutation; half cyclically ordered group
UR - http://eudml.org/doc/31037
ER -

References

top
  1. On the maximal Dedekind completion of a half partially ordered group, Math. Slovaca 46 (1996), 379–390. (1996) MR1472632
  2. Cantor extension of a half lattice ordered group, Math. Slovaca 48 (1998), 221–231. (1998) MR1647682
  3. Maximal Dedekind completion of a half lattice ordered group, Math. Slovaca 49 (1999), 403–416. (1999) MR1719680
  4. 10.1006/jctb.1995.1022, J.  Combinatorial Theory, Series  B 63 (1995), 310–321. (1995) MR1320173DOI10.1006/jctb.1995.1022
  5. 10.1023/A:1006381208272, Order 16 (1999), 149–164. (1999) MR1752172DOI10.1023/A:1006381208272
  6. 10.4064/fm-139-2-75-89, Fundamenta Math. 139 (1991), 75–89. (1991) MR1150592DOI10.4064/fm-139-2-75-89
  7. Varieties of half lattice ordered groups of monotonic permutations in chains, Prepublication No  57, Université Paris  7, CNRS Logique (1996). (1996) 
  8. On half lattice ordered groups, Czechoslovak Math.  J. 46 (1996), 745–767. (1996) MR1414606
  9. 10.1023/A:1013761906636, Czechoslovak Math. J. 51 (2001), 127–138. (2001) MR1814638DOI10.1023/A:1013761906636
  10. 10.1023/A:1021718426347, Czechoslovak Math.  J. 52 (2002), 275–294. (2002) MR1905435DOI10.1023/A:1021718426347
  11. On convex linearly ordered subgroups of a h -group, Math. Slovaca 50 (2000), 127–133. (2000) MR1763115
  12. Cyclically ordered sets, Czechoslovak Math.  J. 32 (1982), 460–473. (1982) MR0669787
  13. Universal cyclically ordered sets, Czechoslovak Math.  J. 35 (1985), 158–161. (1985) MR0779343
  14. On representations of cyclically ordered sets, Czechoslovak Math.  J. 39 (1989), 127–132. (1989) MR0669787
  15. 10.1016/S0195-6698(89)80022-8, European J.  Combin. 10 (1989), 477–488. (1989) Zbl0692.05059MR1014556DOI10.1016/S0195-6698(89)80022-8
  16. Torsion classes and torsion prime selectors of h -groups, Math. Slovaca 50 (2000), 31–40. (2000) MR1764343

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.