Modular functions on multilattices
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 3, page 499-512
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAvallone, Anna. "Modular functions on multilattices." Czechoslovak Mathematical Journal 52.3 (2002): 499-512. <http://eudml.org/doc/30719>.
@article{Avallone2002,
abstract = {We prove that every modular function on a multilattice $L$ with values in a topological Abelian group generates a uniformity on $L$ which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of $L$.},
author = {Avallone, Anna},
journal = {Czechoslovak Mathematical Journal},
keywords = {multilattices; modular functions; multilattices; modular functions},
language = {eng},
number = {3},
pages = {499-512},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Modular functions on multilattices},
url = {http://eudml.org/doc/30719},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Avallone, Anna
TI - Modular functions on multilattices
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 499
EP - 512
AB - We prove that every modular function on a multilattice $L$ with values in a topological Abelian group generates a uniformity on $L$ which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of $L$.
LA - eng
KW - multilattices; modular functions; multilattices; modular functions
UR - http://eudml.org/doc/30719
ER -
References
top- 10.1007/BF00676229, Internat. J. Theoret. Phys. 34 (1995), 1197–1204. (1995) Zbl0841.28007MR1353662DOI10.1007/BF00676229
- Nonatomic vector-valued modular functions, Annal. Soc. Math. Polon. Series I: Comment. Math. XXXIX (1999), 37–50. (1999) Zbl0987.28012MR1739014
- Control and separating points of modular functions, Math. Slovaca 43 (1999), . (1999) MR1696950
- Extensions of modular functions on orthomodular lattices, Italian J. Pure Appl. Math, To appear. MR1842373
- Modular functions: Uniform boundedness and compactness, Rend. Circ. Mat. Palermo XLVII (1998), 221–264. (1998) MR1633479
- Extension theorems (vector measures on quantum logics), Czechoslovak Math. J. 46 (121) (1996), 179–192. (1996) MR1371699
- 10.1006/jmaa.1996.5291, J. Math. Anal. Appl. 209 (1997), 507–528. (1997) MR1474622DOI10.1006/jmaa.1996.5291
- A topological approach to the study of fuzzy measures, Funct. Anal. Econom. Theory, Springer, 1998, pp. 17–46. (1998) MR1730117
- The Hahn decomposition theorem and applications, Fuzzy Sets Systems 118 (2001), 519–528. (2001) MR1809398
- 10.1002/mana.19931630117, Math. Nachr. 163 (1993), 177–201. (1993) MR1235066DOI10.1002/mana.19931630117
- Les ensembles partiellement ordonnes et le theoreme de raffinement de Schrelier II, Czechoslovak Math. J. 5 (1955), 308–344. (1955) MR0076744
- Lattice Theory, Third edition, AMS Providence, R.I., 1967. (1967) MR0227053
- Equivalence of group-valued measure on an abstract lattice, Bull. Acad. Pol. Sci. 28 (1980), 549–556. (1980) MR0628641
- 10.1007/BF02483932, Algebra Universalis 14 (1982), 287–291. (1982) MR0654397DOI10.1007/BF02483932
- 10.1007/PL00006017, Semigroup Forum 61 (2000), 91–115. (2000) Zbl0966.28008MR1839217DOI10.1007/PL00006017
- 10.1016/0012-365X(81)90263-6, Discrete Math. 33 (1981), 99–101. (1981) MR0597233DOI10.1016/0012-365X(81)90263-6
- Sur les axiomes des multistructures, Czechoslovak Math. J. 6 (1956), 426–430. (1956) MR0099933
- Isometries of multilattice groups, Czechoslovak Math. J. 33 (1983), 602–612. (1983) MR0721089
- Valuations and distance function on directed multilattices, Math. Slovaca 46 (1996), 143–155. (1996) MR1426999
- Congruence relations on and varieties of directed multilattices, Math. Slovaca 38 (1988), 105–122. (1988) MR0945364
- 10.1007/BFb0072613, Lectures Notes in Math. 1089 (1984), 171–180. (1984) Zbl0576.28014MR0786696DOI10.1007/BFb0072613
- 10.1007/BF01764134, Ann. Mat. Pura Appl. 160 (1991), 347–370. (1991) MR1163215DOI10.1007/BF01764134
- 10.1007/BF01111744, Order 12 (1995), 295–305. (1995) Zbl0834.06013MR1361614DOI10.1007/BF01111744
- On modular functions, Funct. Approx. XXIV (1996), 35–52. (1996) Zbl0887.06011MR1453447
- 10.1007/BF00676294, Internat. J. Theoret. Phys. 34 (1995), 1799–1806. (1995) Zbl0843.06005MR1353726DOI10.1007/BF00676294
- 10.1016/S0166-8641(99)00049-8, Topology Appl. 105 (2000), 47–64. (2000) Zbl1121.54312MR1761086DOI10.1016/S0166-8641(99)00049-8
- Two extension theorems. Modular functions on complemented lattices, Preprint. Zbl0998.06006MR1885457
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.