Topological characterizations of ordered groups with quasi-divisor theory
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 3, page 595-607
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMočkoř, Jiří. "Topological characterizations of ordered groups with quasi-divisor theory." Czechoslovak Mathematical Journal 52.3 (2002): 595-607. <http://eudml.org/doc/30728>.
@article{Močkoř2002,
abstract = {For an order embedding $G\overset\{h\}\{\rightarrow \}\{\rightarrow \}\Gamma $ of a partly ordered group $G$ into an $l$-group $\Gamma $ a topology $\mathcal \{T\}_\{\widehat\{W\}\}$ is introduced on $\Gamma $ which is defined by a family of valuations $W$ on $G$. Some density properties of sets $h(G)$, $h(X_t)$ and $(h(X_t)\setminus \lbrace h(g_1),\dots ,h(g_n)\rbrace )$ ($X_t$ being $t$-ideals in $G$) in the topological space $(\Gamma ,\mathcal \{T\}_\{\widehat\{W\}\})$ are then investigated, each of them being equivalent to the statement that $h$ is a strong theory of quasi-divisors.},
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi-divisor theory; ordered group; valuations; $t$-ideal; quasi-divisor theory; ordered group; valuations; -ideal},
language = {eng},
number = {3},
pages = {595-607},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Topological characterizations of ordered groups with quasi-divisor theory},
url = {http://eudml.org/doc/30728},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Močkoř, Jiří
TI - Topological characterizations of ordered groups with quasi-divisor theory
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 595
EP - 607
AB - For an order embedding $G\overset{h}{\rightarrow }{\rightarrow }\Gamma $ of a partly ordered group $G$ into an $l$-group $\Gamma $ a topology $\mathcal {T}_{\widehat{W}}$ is introduced on $\Gamma $ which is defined by a family of valuations $W$ on $G$. Some density properties of sets $h(G)$, $h(X_t)$ and $(h(X_t)\setminus \lbrace h(g_1),\dots ,h(g_n)\rbrace )$ ($X_t$ being $t$-ideals in $G$) in the topological space $(\Gamma ,\mathcal {T}_{\widehat{W}})$ are then investigated, each of them being equivalent to the statement that $h$ is a strong theory of quasi-divisors.
LA - eng
KW - quasi-divisor theory; ordered group; valuations; $t$-ideal; quasi-divisor theory; ordered group; valuations; -ideal
UR - http://eudml.org/doc/30728
ER -
References
top- Ideale in kommutativen Halbgruppen, Rec. Math. Soc. Math. Moscow 36 (1929), 401–407. (German) (1929)
- Lattice-ordered Groups, D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. (1988) MR0937703
- Divisors of finite character, Ann. Mat. Pura Appl. 33 (1983), 327–361. (1983) Zbl0533.20034MR0725032
- Localizations dans les systémes d’idéaux, C. R. Acad. Sci. Paris 272 (1971), 465–468. (1971) MR0277511
- Number Theory, Academic Press, New York, 1966. (1966) MR0195803
- Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
- Krull semigroups and divisor class group, Canad. J. Math. 33 (1981), 1459–1468. (1981) MR0645239
- 10.1016/0022-4049(94)00088-Z, J. Pure Appl. Algebra 102 (1995), 289–311. (1995) MR1354993DOI10.1016/0022-4049(94)00088-Z
- Multiplicative Ideal Theory, M. Dekker, Inc., New York, 1972. (1972) Zbl0248.13001MR0427289
- Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1–27. (1968) Zbl0173.03504MR0220726
- Some results on -multiplication rings, Canad. J. Math. 19 (1967), 710-722. (1967) Zbl0148.26701MR0215830
- Les systémes d’idéaux, Dunod, Paris, 1960. (1960) Zbl0101.27502MR0114810
- Groups of Divisibility, D. Reidl Publ. Co., Dordrecht, 1983. (1983) MR0720862
- Approximation Theorems in Commutative Algebra, Kluwer Academic publ., Dordrecht, 1992. (1992) MR1207134
- Groups with quasi-divisor theory, Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. (1993) MR1223185
- Divisor class groups of ordered subgroups, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 37–46. (1993) MR1250925
- Quasi-divisors theory of partly ordered groups, Grazer Math. Ber. 318 (1992), 81–98. (1992) MR1227404
- 10.1016/S0022-4049(96)00059-X, J. Pure Appl. Algebra 120 (1997), 51–65. (1997) MR1466097DOI10.1016/S0022-4049(96)00059-X
- Some remarks on Lorezen -group of partly ordered group, Czechoslovak Math. J. 46(121) (1996), 537–552. (1996) MR1408304
- Divisor class group and the theory of quasi-divisors, To appear. MR1765996
- Semi-valuations and groups of divisibility, Canad. J. Math. 21 (1969), 576-591. (1969) Zbl0177.06501MR0242819
- Divisorentheorie einer Halbgruppe, Math. Z. 114 (1970), 113–120. (1970) Zbl0177.03202MR0262401
- 10.4064/aa-31-3-247-257, Acta Arith. 31 (1976), 247–257. (1976) Zbl0303.13014MR0444817DOI10.4064/aa-31-3-247-257
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.