On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type

Jong Yeoul Park; Jeong Ja Bae

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 4, page 781-795
  • ISSN: 0011-4642

Abstract

top
Let Ω be a bounded domain in n with a smooth boundary Γ . In this work we study the existence of solutions for the following boundary value problem: 2 y t 2 - M Ω | y | 2 d x Δ y - t Δ y = f ( y ) in Q = Ω × ( 0 , ) , . 1 y = 0 in Σ 1 = Γ 1 × ( 0 , ) , M Ω | y | 2 d x y ν + t y ν = g in Σ 0 = Γ 0 × ( 0 , ) , y ( 0 ) = y 0 , y t ( 0 ) = y 1 in Ω , ( 1 ) where M is a C 1 -function such that M ( λ ) λ 0 > 0 for every λ 0 and f ( y ) = | y | α y for α 0 .

How to cite

top

Park, Jong Yeoul, and Bae, Jeong Ja. "On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type." Czechoslovak Mathematical Journal 52.4 (2002): 781-795. <http://eudml.org/doc/30744>.

@article{Park2002,
abstract = {Let $\Omega $ be a bounded domain in $\{\mathbb \{R\}\}^n$ with a smooth boundary $\Gamma $. In this work we study the existence of solutions for the following boundary value problem: \[ \frac\{\partial ^2 y\}\{\partial t^2\}-M\biggl (\int \_\Omega |\nabla y|^2\mathrm \{d\}x\biggr ) \Delta y -\frac\{\partial \}\{\partial t\}\Delta y=f(y) \quad \text\{in\} Q=\Omega \times (0,\infty ),.1 y=0 \quad \text\{in\} \Sigma \_1=\Gamma \_\{\!1\} \times (0,\infty ), M\biggl (\int \_\Omega |\nabla y|^2\mathrm \{d\}x\biggr ) \frac\{\partial y\}\{\partial \nu \} +\frac\{\partial \}\{\partial t\}\Bigl (\frac\{\partial y\}\{\partial \nu \}\Bigr )=g \quad \text\{in\} \Sigma \_0=\Gamma \_\{\!0\} \times (0,\infty ), y(0)=y\_0,\quad \frac\{\partial y\}\{\partial t\}\,(0)=y\_1 \quad \text\{in\} \quad \Omega , \qquad \mathrm \{(1)\}\] where $M$ is a $C^1$-function such that $M(\lambda ) \ge \lambda _0 >0$ for every $\lambda \ge 0$ and $f(y)=|y|^\alpha y$ for $\alpha \ge 0$.},
author = {Park, Jong Yeoul, Bae, Jeong Ja},
journal = {Czechoslovak Mathematical Journal},
keywords = {existence and uniqueness; Galerkin method; nondegenerate wave equation; existence and uniqueness; Galerkin method},
language = {eng},
number = {4},
pages = {781-795},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type},
url = {http://eudml.org/doc/30744},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Park, Jong Yeoul
AU - Bae, Jeong Ja
TI - On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 4
SP - 781
EP - 795
AB - Let $\Omega $ be a bounded domain in ${\mathbb {R}}^n$ with a smooth boundary $\Gamma $. In this work we study the existence of solutions for the following boundary value problem: \[ \frac{\partial ^2 y}{\partial t^2}-M\biggl (\int _\Omega |\nabla y|^2\mathrm {d}x\biggr ) \Delta y -\frac{\partial }{\partial t}\Delta y=f(y) \quad \text{in} Q=\Omega \times (0,\infty ),.1 y=0 \quad \text{in} \Sigma _1=\Gamma _{\!1} \times (0,\infty ), M\biggl (\int _\Omega |\nabla y|^2\mathrm {d}x\biggr ) \frac{\partial y}{\partial \nu } +\frac{\partial }{\partial t}\Bigl (\frac{\partial y}{\partial \nu }\Bigr )=g \quad \text{in} \Sigma _0=\Gamma _{\!0} \times (0,\infty ), y(0)=y_0,\quad \frac{\partial y}{\partial t}\,(0)=y_1 \quad \text{in} \quad \Omega , \qquad \mathrm {(1)}\] where $M$ is a $C^1$-function such that $M(\lambda ) \ge \lambda _0 >0$ for every $\lambda \ge 0$ and $f(y)=|y|^\alpha y$ for $\alpha \ge 0$.
LA - eng
KW - existence and uniqueness; Galerkin method; nondegenerate wave equation; existence and uniqueness; Galerkin method
UR - http://eudml.org/doc/30744
ER -

References

top
  1. 10.1006/jmaa.1998.6057, J.  Math. Anal. Appl. 226 (1998), 40–60. (1998) MR1646453DOI10.1006/jmaa.1998.6057
  2. On the existence of global solutions for some nonlinear hyperbolic equations with Neumann conditions, TRU Math. 24 (1988), 1–17. (1988) Zbl0707.35094MR0999375
  3. Quelques méthode de résolution des probléme aux limites nonlinéaire, Dunod Gauthier–Villars, Paris (1969). (1969) MR0259693
  4. 10.1006/jmaa.1996.0464, J.  Math. Anal. Appl. 204 (1996), 729–753. (1996) MR1422769DOI10.1006/jmaa.1996.0464
  5. 10.1016/0022-247X(77)90211-6, J.  Math. Anal. Appl. 58 (1977), 336–343. (1977) MR0437890DOI10.1016/0022-247X(77)90211-6
  6. 10.1016/0022-460X(68)90200-9, J.  Sound Vibration 8 (1968), 134–146. (1968) DOI10.1016/0022-460X(68)90200-9
  7. On global solutions of some degenerate quasilinear hyperbolic equation with dissipative damping terms, Funkcial. Ekvac. 33 (1990), 151–159. (1990) MR1065473
  8. 10.1006/jdeq.1997.3263, J.  Differential Equations 137 (1997), 273–301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.