On the center of the generalized Liénard system

Cheng Dong Zhao; Qi-Min He

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 4, page 817-832
  • ISSN: 0011-4642

Abstract

top
In this paper, we discuss the conditions for a center for the generalized Liénard system d x d t = ϕ ( y ) - F ( x ) , d y d t = - g ( x ) , or d x d t = ψ ( y ) , dy d t = - f ( x ) h ( y ) - g ( x ) , with f ( x ) , g ( x ) , ϕ ( y ) , ψ ( y ) , h ( y ) , F ( x ) = 0 x f ( x ) d x , and x g ( x ) > 0 for x 0 . By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].

How to cite

top

Zhao, Cheng Dong, and He, Qi-Min. "On the center of the generalized Liénard system." Czechoslovak Mathematical Journal 52.4 (2002): 817-832. <http://eudml.org/doc/30747>.

@article{Zhao2002,
abstract = {In this paper, we discuss the conditions for a center for the generalized Liénard system \[ \frac\{\{\rm d\}x\}\{\{\rm d\}t\}=\varphi (y)-F(x), \qquad \frac\{\{\rm d\}y\}\{\{\rm d\}t\}=-g(x), \] or \[ \frac\{\{\rm d\}x\}\{\{\rm d\}t\}=\psi (y), \qquad \frac\{\{\rm dy\}\}\{\{\rm d\}t\}= -f(x)h(y)-g(x), \] with $f(x)$, $g(x)$, $\varphi (y)$, $\psi (y)$, $h(y)\: \mathbb \{R\}\rightarrow \mathbb \{R\}$, $F(x)=\int _0^xf(x)\mathrm \{d\}x$, and $xg(x)>0$ for $x\ne 0$. By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].},
author = {Zhao, Cheng Dong, He, Qi-Min},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Liénard system; local center; global center; the differetial inequality theorem; the first approximation; generalized Liénard system; local center; global center; the differential inequality theorem; the first approximation},
language = {eng},
number = {4},
pages = {817-832},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the center of the generalized Liénard system},
url = {http://eudml.org/doc/30747},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Zhao, Cheng Dong
AU - He, Qi-Min
TI - On the center of the generalized Liénard system
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 4
SP - 817
EP - 832
AB - In this paper, we discuss the conditions for a center for the generalized Liénard system \[ \frac{{\rm d}x}{{\rm d}t}=\varphi (y)-F(x), \qquad \frac{{\rm d}y}{{\rm d}t}=-g(x), \] or \[ \frac{{\rm d}x}{{\rm d}t}=\psi (y), \qquad \frac{{\rm dy}}{{\rm d}t}= -f(x)h(y)-g(x), \] with $f(x)$, $g(x)$, $\varphi (y)$, $\psi (y)$, $h(y)\: \mathbb {R}\rightarrow \mathbb {R}$, $F(x)=\int _0^xf(x)\mathrm {d}x$, and $xg(x)>0$ for $x\ne 0$. By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].
LA - eng
KW - generalized Liénard system; local center; global center; the differetial inequality theorem; the first approximation; generalized Liénard system; local center; global center; the differential inequality theorem; the first approximation
UR - http://eudml.org/doc/30747
ER -

References

top
  1. 10.1006/jdeq.1993.1021, J.  Differential Equations 102 (1993), 53–61. (1993) MR1209976DOI10.1006/jdeq.1993.1021
  2. 10.1006/jmaa.1993.1381, J.  Math. Anal. Appl. 100 (1993), 43–59. (1993) MR1250276DOI10.1006/jmaa.1993.1381
  3. 10.1016/0022-0396(71)90050-7, J.  Differential Equations 10 (1971), 262–269. (1971) MR0288360DOI10.1016/0022-0396(71)90050-7
  4. 10.1016/0362-546X(91)90075-C, Nonlinear Anal. 17 (1991), 333–345. (1991) MR1123207DOI10.1016/0362-546X(91)90075-C
  5. On the global center of generalized Liénard equation and its application to stability problems, Funkc. Ekvacioj 28 (1985), 171–192. (1985) MR0816825
  6. 10.1007/978-1-4684-0392-3, Springer-Verlag, New York, 1991. (1991) MR1083151DOI10.1007/978-1-4684-0392-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.