On the center of the generalized Liénard system
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 4, page 817-832
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhao, Cheng Dong, and He, Qi-Min. "On the center of the generalized Liénard system." Czechoslovak Mathematical Journal 52.4 (2002): 817-832. <http://eudml.org/doc/30747>.
@article{Zhao2002,
abstract = {In this paper, we discuss the conditions for a center for the generalized Liénard system \[ \frac\{\{\rm d\}x\}\{\{\rm d\}t\}=\varphi (y)-F(x), \qquad \frac\{\{\rm d\}y\}\{\{\rm d\}t\}=-g(x), \]
or \[ \frac\{\{\rm d\}x\}\{\{\rm d\}t\}=\psi (y), \qquad \frac\{\{\rm dy\}\}\{\{\rm d\}t\}= -f(x)h(y)-g(x), \]
with $f(x)$, $g(x)$, $\varphi (y)$, $\psi (y)$, $h(y)\: \mathbb \{R\}\rightarrow \mathbb \{R\}$, $F(x)=\int _0^xf(x)\mathrm \{d\}x$, and $xg(x)>0$ for $x\ne 0$. By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].},
author = {Zhao, Cheng Dong, He, Qi-Min},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Liénard system; local center; global center; the differetial inequality theorem; the first approximation; generalized Liénard system; local center; global center; the differential inequality theorem; the first approximation},
language = {eng},
number = {4},
pages = {817-832},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the center of the generalized Liénard system},
url = {http://eudml.org/doc/30747},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Zhao, Cheng Dong
AU - He, Qi-Min
TI - On the center of the generalized Liénard system
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 4
SP - 817
EP - 832
AB - In this paper, we discuss the conditions for a center for the generalized Liénard system \[ \frac{{\rm d}x}{{\rm d}t}=\varphi (y)-F(x), \qquad \frac{{\rm d}y}{{\rm d}t}=-g(x), \]
or \[ \frac{{\rm d}x}{{\rm d}t}=\psi (y), \qquad \frac{{\rm dy}}{{\rm d}t}= -f(x)h(y)-g(x), \]
with $f(x)$, $g(x)$, $\varphi (y)$, $\psi (y)$, $h(y)\: \mathbb {R}\rightarrow \mathbb {R}$, $F(x)=\int _0^xf(x)\mathrm {d}x$, and $xg(x)>0$ for $x\ne 0$. By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].
LA - eng
KW - generalized Liénard system; local center; global center; the differetial inequality theorem; the first approximation; generalized Liénard system; local center; global center; the differential inequality theorem; the first approximation
UR - http://eudml.org/doc/30747
ER -
References
top- 10.1006/jdeq.1993.1021, J. Differential Equations 102 (1993), 53–61. (1993) MR1209976DOI10.1006/jdeq.1993.1021
- 10.1006/jmaa.1993.1381, J. Math. Anal. Appl. 100 (1993), 43–59. (1993) MR1250276DOI10.1006/jmaa.1993.1381
- 10.1016/0022-0396(71)90050-7, J. Differential Equations 10 (1971), 262–269. (1971) MR0288360DOI10.1016/0022-0396(71)90050-7
- 10.1016/0362-546X(91)90075-C, Nonlinear Anal. 17 (1991), 333–345. (1991) MR1123207DOI10.1016/0362-546X(91)90075-C
- On the global center of generalized Liénard equation and its application to stability problems, Funkc. Ekvacioj 28 (1985), 171–192. (1985) MR0816825
- 10.1007/978-1-4684-0392-3, Springer-Verlag, New York, 1991. (1991) MR1083151DOI10.1007/978-1-4684-0392-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.