Convex chains in a pseudo MV-algebra

Ján Jakubík

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 1, page 113-125
  • ISSN: 0011-4642

Abstract

top
For a pseudo M V -algebra 𝒜 we denote by ( 𝒜 ) the underlying lattice of 𝒜 . In the present paper we investigate the algebraic properties of maximal convex chains in ( 𝒜 ) containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.

How to cite

top

Jakubík, Ján. "Convex chains in a pseudo MV-algebra." Czechoslovak Mathematical Journal 53.1 (2003): 113-125. <http://eudml.org/doc/30763>.

@article{Jakubík2003,
abstract = {For a pseudo $MV$-algebra $\mathcal \{A\}$ we denote by $\ell (\mathcal \{A\})$ the underlying lattice of $\mathcal \{A\}$. In the present paper we investigate the algebraic properties of maximal convex chains in $\ell (\mathcal \{A\})$ containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo $MV$-algebra; convex chain; Archimedean property; direct product decomposition; pseudo MV-algebra; convex chain; Archimedean property; direct product decomposition},
language = {eng},
number = {1},
pages = {113-125},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convex chains in a pseudo MV-algebra},
url = {http://eudml.org/doc/30763},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Jakubík, Ján
TI - Convex chains in a pseudo MV-algebra
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 113
EP - 125
AB - For a pseudo $MV$-algebra $\mathcal {A}$ we denote by $\ell (\mathcal {A})$ the underlying lattice of $\mathcal {A}$. In the present paper we investigate the algebraic properties of maximal convex chains in $\ell (\mathcal {A})$ containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.
LA - eng
KW - pseudo $MV$-algebra; convex chain; Archimedean property; direct product decomposition; pseudo MV-algebra; convex chain; Archimedean property; direct product decomposition
UR - http://eudml.org/doc/30763
ER -

References

top
  1. Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library, vol.  7, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1786097
  2. Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
  3. New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. (2000) MR1861369
  4. Pseudo M V -algebras: a noncommutative extension of M V -algebras, In: The Proceedings of the Fourth International Symposyium on Economic Informatics, Bucharest, 1999, pp. 961–968. (1999) MR1730100
  5. Pseudo M V -algebras, Multiple Valued Logic (a special issue dedicated to Gr. C.  Moisil) 6 (2001), 95–135. (2001) MR1817439
  6. Direct product of M V -algebras, Czechoslovak Math.  J. 44(119) (1994), 725–739. (1994) MR1295146
  7. Direct product decompositions of pseudo M V -algebras, Arch. Math. 37 (2001), 131–142. (2001) MR1838410
  8. On chains in M V -algebras, Math. Slovaca 51 (2001), 151–166. (2001) MR1841444
  9. 10.1023/A:1021766309509, Czechoslovak Math.  J. 52(127) (2002), 255–273. (2002) MR1905434DOI10.1023/A:1021766309509

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.