On total incomparability of mixed Tsirelson spaces

Julio Bernués; Javier Pascual

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 4, page 841-859
  • ISSN: 0011-4642

Abstract

top
We give criteria of total incomparability for certain classes of mixed Tsirelson spaces. We show that spaces of the form T [ ( k , θ k ) k = 1 l ] with index i ( k ) finite are either c 0 or p saturated for some p and we characterize when any two spaces of such a form are totally incomparable in terms of the index i ( k ) and the parameter θ k . Also, we give sufficient conditions of total incomparability for a particular class of spaces of the form T [ ( 𝒜 k , θ k ) k = 1 ] in terms of the asymptotic behaviour of the sequence i = 1 n e i where ( e i ) is the canonical basis.

How to cite

top

Bernués, Julio, and Pascual, Javier. "On total incomparability of mixed Tsirelson spaces." Czechoslovak Mathematical Journal 53.4 (2003): 841-859. <http://eudml.org/doc/30819>.

@article{Bernués2003,
abstract = {We give criteria of total incomparability for certain classes of mixed Tsirelson spaces. We show that spaces of the form $T[(\mathcal \{M\}_k,\theta _k)_\{k =1\}^\{l\}]$ with index $i(\mathcal \{M\}_k)$ finite are either $c_0$ or $\ell _p$ saturated for some $p$ and we characterize when any two spaces of such a form are totally incomparable in terms of the index $i(\mathcal \{M\}_k)$ and the parameter $\theta _k$. Also, we give sufficient conditions of total incomparability for a particular class of spaces of the form $T[(\mathcal \{A\}_k,\theta _k)_\{k = 1\}^\infty ]$ in terms of the asymptotic behaviour of the sequence $\Bigl \Vert \sum _\{i=1\}^n e_i\Bigr \Vert $ where $(e_i)$ is the canonical basis.},
author = {Bernués, Julio, Pascual, Javier},
journal = {Czechoslovak Mathematical Journal},
keywords = {mixed Tsirelson spaces; totally incomparable spaces; mixed Tsirelson spaces; totally incomparable spaces},
language = {eng},
number = {4},
pages = {841-859},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On total incomparability of mixed Tsirelson spaces},
url = {http://eudml.org/doc/30819},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Bernués, Julio
AU - Pascual, Javier
TI - On total incomparability of mixed Tsirelson spaces
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 841
EP - 859
AB - We give criteria of total incomparability for certain classes of mixed Tsirelson spaces. We show that spaces of the form $T[(\mathcal {M}_k,\theta _k)_{k =1}^{l}]$ with index $i(\mathcal {M}_k)$ finite are either $c_0$ or $\ell _p$ saturated for some $p$ and we characterize when any two spaces of such a form are totally incomparable in terms of the index $i(\mathcal {M}_k)$ and the parameter $\theta _k$. Also, we give sufficient conditions of total incomparability for a particular class of spaces of the form $T[(\mathcal {A}_k,\theta _k)_{k = 1}^\infty ]$ in terms of the asymptotic behaviour of the sequence $\Bigl \Vert \sum _{i=1}^n e_i\Bigr \Vert $ where $(e_i)$ is the canonical basis.
LA - eng
KW - mixed Tsirelson spaces; totally incomparable spaces; mixed Tsirelson spaces; totally incomparable spaces
UR - http://eudml.org/doc/30819
ER -

References

top
  1. Banach spaces of the type of Tsirelson, Preprint (1992). (1992) 
  2. 10.1090/S0002-9947-97-01774-1, Trans. Amer. Math. Soc. 349 (1997), 973–995. (1997) MR1390965DOI10.1090/S0002-9947-97-01774-1
  3. 10.1016/0022-1236(86)90089-3, J. Funct. Anal. 69 (1986), 207–228. (1986) MR0865221DOI10.1016/0022-1236(86)90089-3
  4. 10.1002/1522-2616(200102)222:1<15::AID-MANA15>3.0.CO;2-2, Math. Nach. 222 (2001), 15–29. (2001) MR1812486DOI10.1002/1522-2616(200102)222:1<15::AID-MANA15>3.0.CO;2-2
  5. El problema de la distorsión y el problema de la base incondicional, Colloquium del departamento de análisis, Universidad Complutense, Sección 1, Vol. 33, 1995. (1995) 
  6. Tsirelson’s Space, LNM 1363, Springer-Verlag, Berlin, 1989. (1989) MR0981801
  7. A uniformly convex Banach space which contains no l p , Compositio Math. 29 (1974), 179–190. (1974) MR0355537
  8. Classical Banach Spaces I, II, Springer-Verlag, New York, 1977. (1977) MR0500056
  9. 10.1023/A:1011456204116, Positivity 5 (2001), 193–238. (2001) Zbl0988.46009MR1836747DOI10.1023/A:1011456204116
  10. 10.1090/S0002-9947-99-02425-3, Trans. Amer. Math. Soc. 352 (2000), 1859–1888. (2000) MR1637094DOI10.1090/S0002-9947-99-02425-3
  11. 10.1007/BF02782845, Israel J. Math. 76 (1991), 81–95. (1991) Zbl0796.46007MR1177333DOI10.1007/BF02782845
  12. 10.1007/BF01078599, Funct. Anal. Appl. 8 (1974), 138–141. (1974) DOI10.1007/BF01078599
  13. 10.1007/BF02761182, Israel J. Math. 32 (1979), 32–38. (1979) Zbl0402.46013MR0531598DOI10.1007/BF02761182

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.