Statistical convergence of infinite series

M. Dindoš; Tibor Šalát; Vladimír Toma

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 4, page 989-1000
  • ISSN: 0011-4642

Abstract

top
In this paper we use the notion of statistical convergence of infinite series naturally introduced as the statistical convergence of the sequence of the partial sums of the series. We will discuss some questions related to the convergence of subseries of a given series.

How to cite

top

Dindoš, M., Šalát, Tibor, and Toma, Vladimír. "Statistical convergence of infinite series." Czechoslovak Mathematical Journal 53.4 (2003): 989-1000. <http://eudml.org/doc/30829>.

@article{Dindoš2003,
abstract = {In this paper we use the notion of statistical convergence of infinite series naturally introduced as the statistical convergence of the sequence of the partial sums of the series. We will discuss some questions related to the convergence of subseries of a given series.},
author = {Dindoš, M., Šalát, Tibor, Toma, Vladimír},
journal = {Czechoslovak Mathematical Journal},
keywords = {statistical convergence; set of the first category; Hausdorff dimension; homogeneous set; statistical convergence; set of the first category; Hausdorff dimension; homogeneous set},
language = {eng},
number = {4},
pages = {989-1000},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Statistical convergence of infinite series},
url = {http://eudml.org/doc/30829},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Dindoš, M.
AU - Šalát, Tibor
AU - Toma, Vladimír
TI - Statistical convergence of infinite series
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 989
EP - 1000
AB - In this paper we use the notion of statistical convergence of infinite series naturally introduced as the statistical convergence of the sequence of the partial sums of the series. We will discuss some questions related to the convergence of subseries of a given series.
LA - eng
KW - statistical convergence; set of the first category; Hausdorff dimension; homogeneous set; statistical convergence; set of the first category; Hausdorff dimension; homogeneous set
UR - http://eudml.org/doc/30829
ER -

References

top
  1. 10.1090/S0002-9904-1943-08061-5, Bull. Amer. Math. Soc. 49 (1943), 924–931. (1943) MR0009209DOI10.1090/S0002-9904-1943-08061-5
  2. Infinite Matrices and Sequence Spaces (Russian Edition), Moscow, 1960. (1960) MR0126098
  3. Remarks on infinite series in linear normed spaces, Tatra Mt. Math. Publ. 19 (2000), 31–46. (2000) MR1771020
  4. Probability: Theory and Examples, Duxbury Press, 1995. (1995) MR1609153
  5. 10.4064/cm-2-3-4-241-244, Coll. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
  6. On statistical convergence, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582
  7. Statistical convergence and I-convergence, To appear in Real Anal. Exch. MR1844385
  8. Additive Zahlentheorie I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. (1956) Zbl0072.03101MR0098721
  9. On Hausdorff measure of linear sets, Czechoslovak Math. J. 11 (86) (1980), 24–56. (Russian) (1980) MR0153802
  10. 10.1007/BF01112142, Math. Zeit. 85 (1964), 209–225. (1964) MR0179507DOI10.1007/BF01112142
  11. Über die Cantorsche Reihen, Czechoslovak Math. J. 18 (93) (1968), 25–56. (1968) 
  12. On subseries of divergent series, Mat. Čas. SAV 18 (1968), 312–338. (1968) MR0252890
  13. On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. (1980) MR0587239
  14. 10.2307/2308747, Amer. Math. Monthly 66 (1959), 361–375. (1959) Zbl0089.04002MR0104946DOI10.2307/2308747
  15. 10.4064/sm-7-1-143-149, Studia Math. 7 (1938), 143–159. (1938) Zbl0019.22501DOI10.4064/sm-7-1-143-149
  16. On statistically convergence series, Punjab University J. Math. XXXXII (1999), 1–8. (1999) MR1778259
  17. On statistical convergence, Proc. Estonian Acad. Sci. Phys. Math. 47 (1998), 299–303. (1998) Zbl0961.40002MR1671445
  18. Trigonometric series I, MIR, Moscow, 1965. (Russian) (1965) MR0178296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.