The structure of disjoint iteration groups on the circle
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 1, page 131-153
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCiepliński, Krzysztof. "The structure of disjoint iteration groups on the circle." Czechoslovak Mathematical Journal 54.1 (2004): 131-153. <http://eudml.org/doc/30844>.
@article{Ciepliński2004,
abstract = {The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle $\{\mathbb \{S\}^1\}$, that is, families $\{\mathcal \{F\}\}=\lbrace F^\{v\}\:\{\mathbb \{S\}^1\}\longrightarrow \{\mathbb \{S\}^1\}\; v\in V\rbrace $ of homeomorphisms such that \[ F^\{v\_\{1\}\}\circ F^\{v\_\{2\}\}=F^\{v\_\{1\}+v\_\{2\}\},\quad v\_1, v\_2\in V, \]
and each $F^\{v\}$ either is the identity mapping or has no fixed point ($(V, +)$ is an arbitrary $2$-divisible nontrivial (i.e., $\mathop \{\mathrm \{c\}ard\}V>1$) abelian group).},
author = {Ciepliński, Krzysztof},
journal = {Czechoslovak Mathematical Journal},
keywords = {(disjoint; non-singular; singular; non-dense; dense; discrete) iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations; iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations},
language = {eng},
number = {1},
pages = {131-153},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The structure of disjoint iteration groups on the circle},
url = {http://eudml.org/doc/30844},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Ciepliński, Krzysztof
TI - The structure of disjoint iteration groups on the circle
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 131
EP - 153
AB - The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle ${\mathbb {S}^1}$, that is, families ${\mathcal {F}}=\lbrace F^{v}\:{\mathbb {S}^1}\longrightarrow {\mathbb {S}^1}\; v\in V\rbrace $ of homeomorphisms such that \[ F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}},\quad v_1, v_2\in V, \]
and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is an arbitrary $2$-divisible nontrivial (i.e., $\mathop {\mathrm {c}ard}V>1$) abelian group).
LA - eng
KW - (disjoint; non-singular; singular; non-dense; dense; discrete) iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations; iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations
UR - http://eudml.org/doc/30844
ER -
References
top- Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co. Inc., River Edge, 1993. (1993) MR1255515
- 10.1007/s000100050023, Aequationes Math. 55 (1998), 106–121. (1998) Zbl0891.39017MR1600588DOI10.1007/s000100050023
- On rational flows of continuous functions, Iteration Theory (Batschuns, 1992), World Sci. Publishing, River Edge, 1996, pp. 265–276. (1996) MR1442291
- Dynamics in One Dimension. Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992. (1992) MR1176513
- Éléments de mathématique. Topologie générale, Hermann, Paris, 1971. (1971) Zbl0249.54001MR0358652
- On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, Publ. Math. Debrecen 55 (1999), 363–383. (1999) MR1721896
- On conjugacy of disjoint iteration groups on the unit circle, Ann. Math. Sil. 13 (1999), 103–118. (1999) MR1735195
- The rotation number of the composition of homeomorphisms, Rocznik Nauk.—Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83–87. (2000) MR1817486
- 10.4134/BKMS.2002.39.2.333, Bull. Korean Math. Soc. 39 (2002), 333–346. (2002) MR1904668DOI10.4134/BKMS.2002.39.2.333
- 10.1142/S0218127403007709, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. (2003) MR2015635DOI10.1142/S0218127403007709
- Ergodic Theory. Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982. (1982) MR0832433
- Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms, The M.I.T. Press Cambridge, Massachusetts-London, 1971. (1971) Zbl0246.58012MR0649788
- A Geometric Introduction to Topology, Addison-Wesley Publishing Co., Reading, Massachusetts-London-Don Mills, 1972. (1972) MR0478128
- An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. (1982) MR0648108
- On embedding of homeomorphisms of the circle in a continuous flow, Iteration theory and its functional equations (Lochau, 1984). Lecture Notes in Math., 1163, Springer, Berlin, 1985, pp. 218–231. (1985) Zbl0616.54037MR0829776
- On the embeddability of commuting functions in a flow, Selected topics in functional equations and iteration theory (Graz, 1991). Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 201–212. (1992) Zbl0797.39007MR1226473
- On the orbits of disjoint groups of continuous functions, Rad. Mat. 8 (1992/96), 95–104. (1992/96) MR1477887
- 10.1007/BF01833995, Aequationes Math. 46 (1993), 19–37. (1993) Zbl0801.39005MR1220719DOI10.1007/BF01833995
- 10.1007/BF03323067, Results Math. 26 (1994), 403–410. (1994) Zbl0830.39009MR1300626DOI10.1007/BF03323067
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.