Complete subobjects of fuzzy sets over -algebras
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 2, page 379-392
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMočkoř, Jiří. "Complete subobjects of fuzzy sets over $MV$-algebras." Czechoslovak Mathematical Journal 54.2 (2004): 379-392. <http://eudml.org/doc/30867>.
@article{Močkoř2004,
abstract = {A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair $\{\mathbf \{A\}\}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set $\{\mathbf \{A\}\}$ which can be identified with some characteristic morphisms $\{\mathbf \{A\}\}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _\{\Omega \}\:\Omega ^*\rightarrow \Omega ^*,\cap _\{\Omega \}$, $\cup _\{\Omega \} \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects.},
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {fuzzy set over $MV$-lagebra; complete subobjects; subobjects classification; fuzzy set over MV-algebra; complete subobjects; subobjects classification},
language = {eng},
number = {2},
pages = {379-392},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete subobjects of fuzzy sets over $MV$-algebras},
url = {http://eudml.org/doc/30867},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Močkoř, Jiří
TI - Complete subobjects of fuzzy sets over $MV$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 379
EP - 392
AB - A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair ${\mathbf {A}}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set ${\mathbf {A}}$ which can be identified with some characteristic morphisms ${\mathbf {A}}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _{\Omega }\:\Omega ^*\rightarrow \Omega ^*,\cap _{\Omega }$, $\cup _{\Omega } \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects.
LA - eng
KW - fuzzy set over $MV$-lagebra; complete subobjects; subobjects classification; fuzzy set over MV-algebra; complete subobjects; subobjects classification
UR - http://eudml.org/doc/30867
ER -
References
top- 10.1016/0165-0114(81)90033-6, Fuzzy Sets and Systems 5 (1981), 47–67. (1981) Zbl0453.03059MR0595953DOI10.1016/0165-0114(81)90033-6
- 10.1016/0022-247X(67)90189-8, J. Math. Anal. Appl. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
- TOPOI, The Categorical Analysis of Logic, North-Holland Publ. Co., Amsterdam-New York-Oxford, 1979. (1979) MR0551362
- A Category Approach to Boolean-Valued Set Theory, Manuscript, University of Waterloo, 1973. (1973)
- Presheaves over GL-monoids, In: Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 127–157. (1995) MR1345643
- M-Valued sets and sheaves over integral, commutative cl-monoids, Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-Boston, 1992, pp. 34–72. (1992) MR1154568
- Classification of subsheaves over GL-algebras, Proceedings of Logic Colloquium 98, Prague, Springer Verlag, 1999. (1999) MR1743263
- Commutative, residuated l-monoids, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 53–106. (1995) MR1345641
- 10.1016/0165-0114(91)90086-6, Fuzzy Sets and Systems 42 (1991), 15–35. (1991) MR1123574DOI10.1016/0165-0114(91)90086-6
- Topos Theory, Academic Press, London-New York-San Francisco, 1977. (1977) Zbl0368.18001MR0470019
- Toposes, Algebraic Geometry and Logic, F. W. Lawvere (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 1971. (1971) MR0330254
- Firts Order Categorical Logic, Springer-Verlag, Berlin-New York-Heidelberg, 1977. (1977) MR0505486
- 10.1016/0165-0114(82)90034-3, Fuzzy Sets and Systems 8 (1982), 101–104. (1982) Zbl0499.03051MR0665492DOI10.1016/0165-0114(82)90034-3
- 10.1016/0165-0114(88)90031-0, Fuzzy Sets and Systems 28 (1988), 235–244. (1988) Zbl0675.03032MR0976664DOI10.1016/0165-0114(88)90031-0
- Fuzzy mappings and fuzzy sets, Comment. Mat. Univ. Carolin. 17 (1976), . (1976) Zbl0343.02048MR0416923
- Closed Categories of L-fuzzy Sets, Vortrage zur Automaten und Algorithmentheorie, TU Dresden, 1976. (1976)
- 10.1016/0165-0114(91)90085-5, Fuzzy Sets and Systems 42 (1991), 3–14. (1991) Zbl0738.04002MR1123573DOI10.1016/0165-0114(91)90085-5
- Fuzzy logic and categories of fuzzy sets, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 235–268. (1995) Zbl0827.03039MR1345646
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.