Complete subobjects of fuzzy sets over M V -algebras

Jiří Močkoř

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 379-392
  • ISSN: 0011-4642

Abstract

top
A subobjects structure of the category Ω - of Ω -fuzzy sets over a complete M V -algebra Ω = ( L , , , , ) is investigated, where an Ω -fuzzy set is a pair 𝐀 = ( A , δ ) such that A is a set and δ A × A Ω is a special map. Special subobjects (called complete) of an Ω -fuzzy set 𝐀 which can be identified with some characteristic morphisms 𝐀 Ω * = ( L × L , μ ) are then investigated. It is proved that some truth-valued morphisms ¬ Ω Ω * Ω * , Ω , Ω Ω * × Ω * Ω * are characteristic morphisms of complete subobjects.

How to cite

top

Močkoř, Jiří. "Complete subobjects of fuzzy sets over $MV$-algebras." Czechoslovak Mathematical Journal 54.2 (2004): 379-392. <http://eudml.org/doc/30867>.

@article{Močkoř2004,
abstract = {A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair $\{\mathbf \{A\}\}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set $\{\mathbf \{A\}\}$ which can be identified with some characteristic morphisms $\{\mathbf \{A\}\}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _\{\Omega \}\:\Omega ^*\rightarrow \Omega ^*,\cap _\{\Omega \}$, $\cup _\{\Omega \} \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects.},
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {fuzzy set over $MV$-lagebra; complete subobjects; subobjects classification; fuzzy set over MV-algebra; complete subobjects; subobjects classification},
language = {eng},
number = {2},
pages = {379-392},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete subobjects of fuzzy sets over $MV$-algebras},
url = {http://eudml.org/doc/30867},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Močkoř, Jiří
TI - Complete subobjects of fuzzy sets over $MV$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 379
EP - 392
AB - A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair ${\mathbf {A}}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set ${\mathbf {A}}$ which can be identified with some characteristic morphisms ${\mathbf {A}}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _{\Omega }\:\Omega ^*\rightarrow \Omega ^*,\cap _{\Omega }$, $\cup _{\Omega } \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects.
LA - eng
KW - fuzzy set over $MV$-lagebra; complete subobjects; subobjects classification; fuzzy set over MV-algebra; complete subobjects; subobjects classification
UR - http://eudml.org/doc/30867
ER -

References

top
  1. 10.1016/0165-0114(81)90033-6, Fuzzy Sets and Systems 5 (1981), 47–67. (1981) Zbl0453.03059MR0595953DOI10.1016/0165-0114(81)90033-6
  2. 10.1016/0022-247X(67)90189-8, J. Math. Anal. Appl. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
  3. TOPOI, The Categorical Analysis of Logic, North-Holland Publ. Co., Amsterdam-New York-Oxford, 1979. (1979) MR0551362
  4. A Category Approach to Boolean-Valued Set Theory, Manuscript, University of Waterloo, 1973. (1973) 
  5. Presheaves over GL-monoids, In: Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 127–157. (1995) MR1345643
  6. M-Valued sets and sheaves over integral, commutative cl-monoids, Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-Boston, 1992, pp. 34–72. (1992) MR1154568
  7. Classification of subsheaves over GL-algebras, Proceedings of Logic Colloquium  98, Prague, Springer Verlag, 1999. (1999) MR1743263
  8. Commutative, residuated l-monoids, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 53–106. (1995) MR1345641
  9. 10.1016/0165-0114(91)90086-6, Fuzzy Sets and Systems 42 (1991), 15–35. (1991) MR1123574DOI10.1016/0165-0114(91)90086-6
  10. Topos Theory, Academic Press, London-New York-San Francisco, 1977. (1977) Zbl0368.18001MR0470019
  11. Toposes, Algebraic Geometry and Logic, F. W. Lawvere (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 1971. (1971) MR0330254
  12. Firts Order Categorical Logic, Springer-Verlag, Berlin-New York-Heidelberg, 1977. (1977) MR0505486
  13. 10.1016/0165-0114(82)90034-3, Fuzzy Sets and Systems 8 (1982), 101–104. (1982) Zbl0499.03051MR0665492DOI10.1016/0165-0114(82)90034-3
  14. 10.1016/0165-0114(88)90031-0, Fuzzy Sets and Systems 28 (1988), 235–244. (1988) Zbl0675.03032MR0976664DOI10.1016/0165-0114(88)90031-0
  15. Fuzzy mappings and fuzzy sets, Comment. Mat. Univ. Carolin. 17 (1976), . (1976) Zbl0343.02048MR0416923
  16. Closed Categories of L-fuzzy Sets, Vortrage zur Automaten und Algorithmentheorie, TU Dresden, 1976. (1976) 
  17. 10.1016/0165-0114(91)90085-5, Fuzzy Sets and Systems 42 (1991), 3–14. (1991) Zbl0738.04002MR1123573DOI10.1016/0165-0114(91)90085-5
  18. Fuzzy logic and categories of fuzzy sets, Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 235–268. (1995) Zbl0827.03039MR1345646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.